PHYSICAL CHEMISTRY

Thermodynamics, Structure, and Change

Tenth Edition

Peter Atkins | Julio de Paula

This page is blank

FUNDAMENTAL CONSTANTS

Constant	Symbol	Value		
			Power of 10	Units
Speed of light	c	$2.99792458{ }^{*}$	10^{8}	$\mathrm{m} \mathrm{s}^{-1}$
Elementary charge	e	1.602176565	10^{-19}	C
Planck's constant	h	6.62606957	10^{-34}	J s
	$\hbar=h / 2 \pi$	1.054571726	10^{-34}	J s
Boltzmann's constant	k	1.3806488	10^{-23}	J K ${ }^{-1}$
Avogadro's constant	$N_{\text {A }}$	6.02214129	10^{23}	mol^{-1}
Gas constant	$R=N_{\text {A }} k$	8.3144621		$\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Faraday's constant	$F=N_{\mathrm{A}} e$	9.64853365	10^{4}	C mol ${ }^{-1}$
Mass				
Electron	$m_{\text {e }}$	9.10938291	10^{-31}	kg
Proton	m_{p}	1.672621777	10^{-27}	kg
Neutron	m_{n}	1.674927351	10^{-27}	kg
Atomic mass constant	m_{u}	1.660538921	10^{-27}	kg
Vacuum permeability	μ_{0}	$4 \pi^{*}$	10^{-7}	$\mathrm{J} \mathrm{s}^{2} \mathrm{C}^{-2} \mathrm{~m}^{-1}$
Vacuum permittivity	$\varepsilon_{0}=1 / \mu_{0} c^{2}$	8.854187817	10^{-12}	$\mathrm{J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon_{0}$	1.112650056	10^{-10}	$\mathrm{J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Bohr magneton	$\mu_{\mathrm{B}}=e \hbar / 2 m_{\text {e }}$	9.27400968	10^{-24}	$\mathrm{J} \mathrm{T}^{-1}$
Nuclear magneton	$\mu_{\mathrm{N}}=e \hbar / 2 m_{\mathrm{p}}$	5.05078353	10^{-27}	$\mathrm{J} \mathrm{T}^{-1}$
Proton magnetic moment	μ_{p}	1.410606743	10^{-26}	J T ${ }^{-1}$
g-Value of electron	$g_{\text {e }}$	2.002319304		
Magnetogyric ratio				
Electron	$\gamma_{\mathrm{e}}=-g_{\mathrm{e}} e / 2 m_{e}$	-1.001 159652	10^{10}	C kg ${ }^{-1}$
Proton	$\gamma_{\mathrm{p}}=2 \mu_{\mathrm{p}} / \hbar$	2.675222004	10^{8}	C kg ${ }^{-1}$
Bohr radius	$a_{0}=4 \pi \varepsilon_{0} \hbar^{2} / e^{2} m_{e}$	5.291772109	10^{-11}	m
Rydberg constant	$\tilde{R}_{\infty}=m_{\mathrm{e}} e^{4} / 8 h^{3} c \varepsilon_{0}^{2}$	1.097373157	10^{5}	cm^{-1}
	$h c \tilde{R}_{\infty} / e$	13.60569253		eV
Fine-structure constant	$\alpha=\mu_{0} e^{2} c / 2 h$	7.2973525698	10^{-3}	
	α^{-1}	1.37035999074	10^{2}	
Second radiation constant	$c_{2}=h c / k$	1.4387770	10^{-2}	m K
Stefan-Boltzmann constant	$\sigma=2 \pi^{5} k^{4} / 15 h^{3} c^{2}$	5.670373	10^{-8}	W m ${ }^{-2} \mathrm{~K}^{-4}$
Standard acceleration of free fall	g	9.80665^{*}		$\mathrm{m} \mathrm{s}^{-2}$
Gravitational constant	G	6.67384	10^{-11}	$\mathrm{Nm}^{2} \mathrm{~kg}^{-2}$

* Exact value. For current values of the constants, see the National Institute of Standards and Technology (NIST) website.

PHYSICAL CHEMISTRY

Thermodynamics, Structure, and Change

Tenth edition

Peter Atkins

Fellow of Lincoln College, University of Oxford, Oxford, UK

Julio de Paula
Professor of Chemistry, Lewis \& Clark College, Portland, Oregon, USA

Publisher: Jessica Fiorillo
Associate Director of Marketing: Debbie Clare
Associate Editor: Heidi Bamatter
Media Acquisitions Editor: Dave Quinn
Marketing Assistant: Samantha Zimbler

Library of Congress Control Number: 2013939968
Physical Chemistry: Thermodynamics, Structure, and Change, Tenth Edition © 2014, 2010, 2006, and 2002 Peter Atkins and Julio de Paula

All rights reserved
ISBN-13: 978-1-4292-9019-7
ISBN-10: 1-4292-9019-6
Published in Great Britain by Oxford University Press
This edition has been authorized by Oxford University Press for sales in the United States and Canada only and not export therefrom.

First printing
W. H. Freeman and Company

41 Madison Avenue
New York, NY 10010
www.whfreeman.com

PREFACE

This new edition is the product of a thorough revision of content and its presentation. Our goal is to make the book even more accessible to students and useful to instructors by enhancing its flexibility. We hope that both categories of user will perceive and enjoy the renewed vitality of the text and the presentation of this demanding but engaging subject.

The text is still divided into three parts, but each chapter is now presented as a series of short and more readily mastered Topics. This new structure allows the instructor to tailor the text within the time constraints of the course as omissions will be easier to make, emphases satisfied more readily, and the trajectory through the subject modified more easily. For instance, it is now easier to approach the material either from a 'quantum first' or a 'thermodynamics first' perspective because it is no longer necessary to take a linear path through chapters. Instead, students and instructors can match the choice of Topics to their learning objectives. We have been very careful not to presuppose or impose a particular sequence, except where it is demanded by common sense.

We open with a Foundations chapter, which reviews basic concepts of chemistry and physics used through the text. Part 1 now carries the title Thermodynamics. New to this edition is coverage of ternary phase diagrams, which are important in applications of physical chemistry to engineering and materials science. Part 2 (Structure) continues to cover quantum theory, atomic and molecular structure, spectroscopy, molecular assemblies, and statistical thermodynamics. Part 3 (Change) has lost a chapter dedicated to catalysis, but not the material. Enzyme-catalysed reactions are now in Chapter 20, and heterogeneous catalysis is now part of a new Chapter 22 focused on surface structure and processes.
As always, we have paid special attention to helping students navigate and master this material. Each chapter opens with a brief summary of its Topics. Then each Topic begins with three questions: 'Why do you need to know this material?,' 'What is the key idea?', and 'What do you need to know already?'. The answers to the third question point to other Topics that we consider appropriate to have studied or at least to refer to as background to the current Topic. The Checklists at the end of each

Topic are useful distillations of the most important concepts and equations that appear in the exposition.
We continue to develop strategies to make mathematics, which is so central to the development of physical chemistry, accessible to students. In addition to associating Mathematical background sections with appropriate chapters, we give more help with the development of equations: we motivate them, justify them, and comment on the steps taken to derive them. We also added a new feature: The chemist's toolkit, which offers quick and immediate help on a concept from mathematics or physics.

This edition has more worked Examples, which require students to organize their thoughts about how to proceed with complex calculations, and more Brief illustrations, which show how to use an equation or deploy a concept in a straightforward way. Both have Self-tests to enable students to assess their grasp of the material. We have structured the end-of-chapter Discussion questions, Exercises, and Problems to match the grouping of the Topics, but have added Topicand Chapter-crossing Integrated activities to show that several Topics are often necessary to solve a single problem. The Resource section has been restructured and augmented by the addition of a list of integrals that are used (and referred to) throughout the text.

We are, of course, alert to the development of electronic resources and have made a special effort in this edition to encourage the use of web-based tools, which are identified in the Using the book section that follows this preface. Important among these tools are Impact sections, which provide examples of how the material in the chapters is applied in such diverse areas as biochemistry, medicine, environmental science, and materials science.
Overall, we have taken this opportunity to refresh the text thoroughly, making it even more flexible, helpful, and up to date. As ever, we hope that you will contact us with your suggestions for its continued improvement.

PWA, Oxford
JdeP, Portland

USING THE BOOK

For the tenth edition of Physical Chemistry: Thermodynamics, Structure, and Change we have tailored the text even more closely to the needs of students. First, the material within each chapter has been reorganized into discrete topics to improve accessibility, clarity, and flexibility. Second, in addition to
the variety of learning features already present, we have significantly enhanced the mathematics support by adding new Chemist's toolkit boxes, and checklists of key concepts at the end of each topic.

Organizing the information

Innovative new structure

Each chapter has been reorganized into short topics, making the text more readable for students and more flexible for instructors. Each topic opens with a comment on why it is important, a statement of the key idea, and a brief summary of the background needed to understand the topic.

> Why do you need to know this material?
> Because chemistry is about matter and the changes that it can undergo, both physically and chemically, the properties of matter underlie the entire discussion in this book.
> What is the key idea?
> The bulk properties of matter are related to the identities

Notes on good practice

Our Notes on good practice will help you avoid making common mistakes. They encourage conformity to the international language of science by setting out the conventions and procedures adopted by the International Union of Pure and Applied Chemistry (IUPAC).

Resource section

The comprehensive Resource section at the end of the book contains a table of integrals, data tables, a summary of conventions about units, and character tables. Short extracts of these tables often appear in the topics themselves, principally to give an idea of the typical values of the physical quantities we are introducing.
applicable only to perfect gases (and other idealized systems) are labelled, as here, with a number in blue.

A note on good practice Although the term 'ideal gas' is almost universally used in place of 'perfect gas', there are reasons for preferring the latter term. In an ideal system the interactions between molecules in a mixture are all the same. In a perfect gas not only are the interactions all the same but they are in fact zero. Few, though, make this useful distinction.

Equation A.5, the perfect gas equation, is a summary of three empirical conclusions, namely Boyle's law ($p \propto 1 / V$ at

RESOURCE SECTION

Contents

964

965
966

Checklist of concepts

A Checklist of key concepts is provided at the end of each topic so that you can tick off those concepts which you feel you have mastered.

Checklist of concepts

1. The entropy acts as a signpost of spontaneous change.
\square 2. Entropy change is defined in terms of heat transactions (the Clausius definition).
\square 3. The Boltzmann formula defines absolute entropies in terms of the number of ways of achieving a configuration.

Presenting the mathematics

Justifications

Mathematical development is an intrinsic part of physical chemistry, and to achieve full understanding you need to see how a particular expression is obtained and if any assumptions have been made. The Justifications are set off from the text to let you adjust the level of detail to meet your current needs and make it easier to review material.

Chemist's toolkits

New to the tenth edition, the Chemist's toolkits are succinct reminders of the mathematical concepts and techniques that you will need in order to understand a particular derivation being described in the main text.

Mathematical backgrounds

There are six Mathematical background sections dispersed throughout the text. They cover in detail the main mathematical concepts that you need to understand in order to be able to master physical chemistry. Each one is located at the end of the chapter to which it is most relevant.

Justification 3A. 1 Heating accompanying reversible adiabatic expansion

This Justification is based on two features of the cycle. One feature is that the two temperatures T_{h} and T_{c} in eqn 3 A .7 lie on the same adiabat in Fig. 3A.7. The second feature is that the energy transferred as heat during the two isothermal stages are

$$
q_{\mathrm{h}}=n R T_{\mathrm{h}} \ln \frac{V_{\mathrm{B}}}{V_{\mathrm{A}}} \quad q_{\mathrm{c}}=n R T_{\mathrm{c}} \ln \frac{V_{\mathrm{D}}}{V_{\mathrm{C}}}
$$

We now show that the two volume ratios are related in a very simple way. From the relation between temperature and volume for reversible adiabatic processes $\left(V T^{k}=\right.$ constant, Topic 2 D$)$:

The chemist's toolkit A. 1

Quantities and units
The result of a measurement is a physical quantity that is reported as a numerical multiple of a unit:

$$
\text { physical quantity }=\text { numerical value } \times \text { unit }
$$

It follows that units may be treated like algebraic quantities and may be multiplied, divided, and cancelled. Thus, the expression (physical quantity)/unit is the numerical value (a dimensionless quantity) of the measurement in the specified

Mathematical background 1 Differentiat

Two of the most important mathematical techniques in the physical sciences are differentiation and integration. They occur throughout the subject, and it is essential to be aware of the procedures involved.

MB1.1 Differentiation: definitions

Differentiation is concerned with the slopes of functions, such as the rate of change of a variable with time. The formal definition of the derivative, $\mathrm{d} f / \mathrm{d} x$, of a function $f(x)$ is

Annotated equations and equation labels

We have annotated many equations to help you follow how they are developed. An annotation can take you across the equals sign: it is a reminder of the substitution used, an approximation made, the terms that have been assumed constant, the integral used, and so on. An annotation can also be a reminder of the significance of an individual term in an expression. We sometimes color a collection of numbers or symbols to show how they carry from one line to the next. Many of the equations are labelled to highlight their significance.

$$
w=-n R T \int_{V_{\mathrm{i}}}^{V_{\mathrm{i}}} \frac{\mathrm{~d} V}{V} \stackrel{\text { Integral A. } 2}{=}-n R T \ln \frac{V_{\mathrm{f}}}{V_{\mathrm{i}}}
$$

$$
\begin{array}{ll|l}
\begin{array}{l}
\text { Perfect gas, } \\
\text { reversible, } \\
\text { isothermal }
\end{array} & \begin{array}{l}
\text { Work of } \\
\text { expansion }
\end{array} & \text { (2A.9) }
\end{array}
$$

Checklists of equations

You don't have to memorize every equation in the text. A checklist at the end of each topic summarizes the most important equations and the conditions under which they apply.

Checklist of equations

Property	Equation
Compression factor	$Z=V_{\mathrm{m}} / V_{\mathrm{m}}^{\circ}$
Virial equation of state	$p V_{m}=R T\left(1+B / V_{m}+C / V_{\mathrm{m}}^{3}+\cdots\right)$
van der Waals equation of state	$p=n R T /(V-n b)-a(n / V)^{2}$
Reduced variables	$X_{\mathrm{r}}=X_{\mathrm{m}} / X_{\mathrm{c}}$

Setting up and solving problems

Brief illustrations

A Brief illustration shows you how to use equations or concepts that have just been introduced in the text. They help you to learn how to use data, manipulate units correctly, and become familiar with the magnitudes of properties. They are all accompanied by a Self-test question which you can use to monitor your progress.

Brief illustration 1C. 5
 Corresponding states

The critical constants of argon and carbon dioxide are given in Table 1C.2. Suppose argon is at 23 atm and 200 K , its reduced pressure and temperature are then

$$
p_{\mathrm{r}}=\frac{23 \mathrm{~atm}}{48.0 \mathrm{~atm}}=0.48 \quad T_{\mathrm{r}}=\frac{200 \mathrm{~K}}{150.7 \mathrm{~K}}=1.33
$$

For carbon dioxide to be in a corresponding state, its pressure and temperature would need to be
$p=0.48 \times(72.9 \mathrm{~atm})=35 \mathrm{~atm} \quad T=1.33 \times 304.2 \mathrm{~K}=405 \mathrm{~K}$
Self-test 1C. 6 What would be the corresponding state of ammonia?

Answer: 53 atm, 539 K

Worked examples

Worked Examples are more detailed illustrations of the application of the material, which require you to assemble and develop concepts and equations. We provide a suggested method for solving the problem and then implement it to reach the answer. Worked examples are also accompanied by Self-test questions.

Example 3A. 2 Calculating the entropy change for a composite process
Calculate the entropy change when argon at $25^{\circ} \mathrm{C}$ and 1.00 bar in a container of volume $0.500 \mathrm{dm}^{3}$ is allowed to expand to $1.000 \mathrm{dm}^{3}$ and is simultaneously heated to $100^{\circ} \mathrm{C}$.

Method As remarked in the text, use reversible isothermal expansion to the final volume, followed by reversible heating at constant volume to the final temperature. The entropy change in the first step is given by eqn 3A. 16 and that of the second step, provided C_{V} is independent of temperature, by eqn 3A. 20 (with C_{V} in place of C_{p}). In each case we need to

TOPIC 3A Entropy

Discussion questions

3A. 1 The evolution of life requires the organization of a very large number of molecules into biological cells. Does the formation of living organisms violate the Second Law of thermodynamics? State your conclusion clearly and present detailed arguments to support it.
3A. 2 Discuss the significance of the terms 'dispersal' and 'disorder' in the context of the Second Law.

Exercises

3A.1(a) During a hypothetical process, the entropy of a system increases by $125 \mathrm{~J} \mathrm{~K}^{-1}$ while the entropy of the surroundings decreases by $125 \mathrm{~J} \mathrm{~K}^{-1}$. Is the process spontaneous?
3A.1(b) During a hypothetical process, the entropy of a system increases by $105 \mathrm{~J} \mathrm{~K}^{-1}$ while the entropy of the surroundings decreases by $95 \mathrm{~J} \mathrm{~K}^{-1}$. Is the process spontaneous?
3A.2(a) A certain ideal heat engine uses water at the triple point as the hot source and an organic liquid as the cold sink. It withdraws 10.00 kJ of heat from the hot source and generates 3.00 kJ of work. What is the temperature of the organic liquid?
3A.2(b) A certain ideal heat engine uses water at the triple point as the hot source and an organic liquid as the cold sink. It withdraws 2.71 kJ of heat from the hot source and generates 0.71 kJ of work. What is the temperature of the organic liquid?

The Instructor's Solutions Manual provides full solutions to the 'b' exercises and to the even-numbered problems (available to download from the Book Companion Site for registered adopters of the book only).

BOOK COMPANION SITE

The Book Companion Site to accompany Physical Chemistry: Thermodynamics, Structure, and Change, tenth edition provides a number of useful teaching and learning resources for students and instructors.

The site can be accessed at:
http://www.whfreeman.com/pchem10e/

Instructor resources are available only to registered adopters of the textbook. To register, simply visit http://www. whfreeman.com/pchem10e/ and follow the appropriate links.

Student resources are openly available to all, without registration.

@) Materials on the Book Companion Site include:

'Impact' sections

'Impact' sections show how physical chemistry is applied in a variety of modern contexts. New for this edition, the Impacts are linked from the text by QR code images. Alternatively, visit the URL displayed next to the QR code image.

Group theory tables

Comprehensive group theory tables are available to download.

Figures and tables from the book

Instructors can find the artwork and tables from the book in ready-to-download format. These may be used for lectures without charge (but not for commercial purposes without specific permission).

Molecular modeling problems

PDFs containing molecular modeling problems can be downloaded, designed for use with the Spartan Student ${ }^{\text {trw }}$ software. However they can also be completed using any modeling software that allows Hartree-Fock, density functional, and MP2 calculations.

Living graphs

These interactive graphs can be used to explore how a property changes as various parameters are changed. Living graphs are sometimes referred to in the Integrated activities at the end of a chapter.

ACKNOWLEDGEMENTS

A book as extensive as this could not have been written without significant input from many individuals. We would like to reiterate our thanks to the hundreds of people who contributed to the first nine editions. Many people gave their advice based on the ninth edition, and others, including students, reviewed the draft chapters for the tenth edition as they emerged. We wish to express our gratitude to the following colleagues:

Oleg Antzutkin, Luleå University of Technology
Mu-Hyun Baik, Indiana University - Bloomington
Maria G. Benavides, University of Houston - Downtown
Joseph A. Bentley, Delta State University
Maria Bohorquez, Drake University
Gary D. Branum, Friends University
Gary S. Buckley, Cameron University
Eleanor Campbell, University of Edinburgh
Lin X. Chen, Northwestern University
Gregory Dicinoski, University of Tasmania
Niels Engholm Henriksen, Technical University of Denmark
Walter C. Ermler, University of Texas at San Antonio
Alexander Y. Fadeev, Seton Hall University
Beth S. Guiton, University of Kentucky
Patrick M. Hare, Northern Kentucky University
Grant Hill, University of Glasgow
Ann Hopper, Dublin Institute of Technology
Garth Jones, University of East Anglia
George A. Kaminsky, Worcester Polytechnic Institute
Dan Killelea, Loyola University of Chicago
Richard Lavrich, College of Charleston
Yao Lin, University of Connecticut
Tony Masiello, California State University - East Bay

Lida Latifzadeh Masoudipour, California State University Dominquez Hills
Christine McCreary, University of Pittsburgh at Greensburg
Ricardo B. Metz, University of Massachusetts Amherst
Maria Pacheco, Buffalo State College
Sid Parrish, Jr., Newberry College
Nessima Salhi, Uppsala University
Michael Schuder, Carroll University
Paul G. Seybold, Wright State University
John W. Shriver, University of Alabama Huntsville
Jens Spanget-Larsen, Roskilde University
Stefan Tsonchev, Northeastern Illinois University
A. L. M. van de Ven, Eindhoven University of Technology

Darren Walsh, University of Nottingham
Nicolas Winter, Dominican University
Georgene Wittig, Carnegie Mellon University
Daniel Zeroka, Lehigh University
Because we prepared this edition at the same time as its sister volume, Physical Chemistry: Quanta, matter, and change, it goes without saying that our colleague on that book, Ron Friedman, has had an unconscious but considerable impact on this text too, and we cannot thank him enough for his contribution to this book. Our warm thanks also go to Charles Trapp, Carmen Giunta, and Marshall Cady who once again have produced the Solutions manuals that accompany this book and whose comments led us to make a number of improvements. Kerry Karukstis contributed helpfully to the Impacts that are now on the web.

Last, but by no means least, we would also like to thank our two commissioning editors, Jonathan Crowe of Oxford University Press and Jessica Fiorillo of W. H. Freeman \& Co., and their teams for their encouragement, patience, advice, and assistance.

This page is deliberately blank.

FULL CONTENTS

List of tables xxiv
List of chemist's toolkits xxvi
Foundations 1
A Matter 2
A. 1 Atoms 2
(a) The nuclear model 2
(b) The periodic table 2
(c) Ions 3
A. 2 Molecules 3
(a) Lewis structures 3
(b) VSEPR theory 4
(c) Polar bonds 4
A. 3 Bulk matter 5
(a) Properties of bulk matter 5
(b) The perfect gas equation 6
Checklist of concepts 7
Checklist of equations 8
B Energy 9
B. 1 Force 9
(a) Momentum 9
(b) Newton's second law of motion 10
B. 2 Energy: a first look 11
(a) Work 11
(b) The definition of energy 11
(c) The Coulomb potential energy 12
(d) Thermodynamics 14
B. 3 The relation between molecular and bulk properties 15
(a) The Boltzmann distribution 15
(b) Equipartition 17
Checklist of concepts 17
Checklist of equations 18
C Waves 19
C. 1 Harmonic waves 19
C. 2 The electromagnetic field 20
Checklist of concepts 22
Checklist of equations 22
Discussion questions and exercises 23
PART 1 Thermodynamics 27
CHAPTER 1 The properties of gases 29
Topic 1A The perfect gas 30
1A. 1 Variables of state 30
(a) Pressure 30
(b) Temperature 31
1A. 2 Equations of state 32
(a) The empirical basis 32
(b) Mixtures of gases 35
Checklist of concepts 36
Checklist of equations 36
Topic 1B The kinetic model 37
1B. 1 The model 37
(a) Pressure and molecular speeds 37
(b) The Maxwell-Boltzmann distribution of speeds 39
(c) Mean values 40
1B.2 Collisions 42
(a) The collision frequency 42
(b) The mean free path 43
Checklist of concepts 44
Checklist of equations 44
Topic 1C Real gases 45
1C. 1 Deviations from perfect behaviour 45
(a) The compression factor 46
(b) Virial coefficients 47
(c) Critical constants 48
1C. 2 The van der Waals equation 48
(a) Formulation of the equation 48
(b) The features of the equation 50
(c) The principle of corresponding states 52
Checklist of concepts 53
Checklist of equations 53
Discussion questions, exercises, and problems 54
Mathematical background 1 Differentiation and integration 59
CHAPTER 2 The First Law 63
Topic 2A Internal energy 64
2A. 1 Work, heat, and energy 65
(a) Operational definitions 65
(b) The molecular interpretation of heat and work 66
2A. 2 The definition of internal energy 66
(a) Molecular interpretation of internal energy 67
(b) The formulation of the First Law 67
2A. 3 Expansion work 68
(a) The general expression for work 68
(b) Expansion against constant pressure 69
(c) Reversible expansion 70
(d) Isothermal reversible expansion 70
A. 4 Heat transaction 71
(a) Calorimetry 71
(b) Heat capacity 72
Checklist of concepts 74
Checklist of equations 74
Topic 2B Enthalpy 75
2B.1 The definition of enthalpy 75
(a) Enthalpy change and heat transfer 75
(b) Calorimetry 76
2B.2 The variation of enthalpy with temperature 77
(a) Heat capacity at constant pressure 77
(b) The relation between heat capacities 79
Checklist of concepts 79
Checklist of equations 79
Topic 2C Thermochemistry 80
2C. 1 Standard enthalpy changes 80
(a) Enthalpies of physical change 81
(b) Enthalpies of chemical change 82
(c) Hess's law 83
2C. 2 Standard enthalpies of formation 84
(a) The reaction enthalpy in terms of enthalpies of formation 85
(b) Enthalpies of formation and molecular modelling 85
2C. 3 The temperature dependence of reaction enthalpies 86
2C. 4 Experimental techniques 87
(a) Differential scanning calorimetry 87
(b) Isothermal titration calorimetry 88
Checklist of concepts 88
Checklist of equations 89
Topic 2D State functions and exact differentials 90
2D. 1 Exact and inexact differentials 90
2D. 2 Changes in internal energy 91
(a) General considerations 91
(b) Changes in internal energy at constant pressure 93
2D. 3 The Joule-Thomson effect 95
(a) Observation of the Joule-Thomson effect 95
(b) The molecular interpretation of the Joule-Thomson effect 98
Checklist of concepts 98
Checklist of equations 99
Topic 2E Adiabatic changes 100
2E. 1 The change in temperature 100
2E. 2 The change in pressure 101
Checklist of concepts 102
Checklist of equations 102
Discussion questions, exercises, and problems 103
Mathematical background 2 Multivariate calculus 109
CHAPTER 3 The Second and Third Laws 112
Topic 3A Entropy 113
3A. 1 The Second Law 113
3A. 2 The definition of entropy 115
(a) The thermodynamic definition of entropy 115
(b) The statistical definition of entropy 116
3A. 3 The entropy as a state function 117
(a) The Carnot cycle 118
(b) The thermodynamic temperature 120
(c) The Clausius inequality 120
3A. 4 Entropy changes accompanying specific processes 121
(a) Expansion 121
(b) Phase transitions 122
(c) Heating 123
(d) Composite processes 124
Checklist of concepts 124
Checklist of equations 125
Topic 3B The measurement of entropy 126
3B. 1 The calorimetric measurement of entropy 126
3B. 2 The Third Law 127
(a) The Nernst heat theorem 127
(b) Third-Law entropies 129
Checklist of concepts 130
Checklist of equations 130
Topic 3C Concentrating on the system 131
3C. 1 The Helmholtz and Gibbs energies 131
(a) Criteria of spontaneity 131
(b) Some remarks on the Helmholtz energy 133
(c) Maximum work 133
(d) Some remarks on the Gibbs energy 134
(e) Maximum non-expansion work 135
3C. 2 Standard molar Gibbs energies 136
(a) Gibbs energies of formation 136
(b) The Born equation 137
Checklist of concepts 138
Checklist of equations 138
Topic 3D Combining the First and Second Laws 140
3D. 1 Properties of the internal energy 140
(a) The Maxwell relations 141
(b) The variation of internal energy with volume 141
3D.2 Properties of the Gibbs energy 142
(a) General considerations 142
(b) The variation of the Gibbs energy with temperature 144
(c) The variation of the Gibbs energy with pressure 144
(d) The fugacity 146
Checklist of concepts 148
Checklist of equations 148
Discussion questions, exercises, and problems 149
CHAPTER 4 Physical transformations of pure substances 154
Topic 4A Phase diagrams of pure substances 155
4A. 1 The stabilities of phases 155
(a) The number of phases 155
(b) Phase transitions 156
(c) Thermodynamic criteria of phase stability 156
4A. 2 Phase boundaries 157
(a) Characteristic properties related to phase transitions 157
(b) The phase rule 159
4A. 3 Three representative phase diagrams 160
(a) Carbon dioxide 160
(b) Water 161
(c) Helium162
Checklist of concepts 162
Checklist of equations 163
Topic 4B Thermodynamic aspects of phase transitions 164
4B.1 The dependence of stability on the conditions 164
(a) The temperature dependence of phase stability 165
(b) The response of melting to applied pressure 165
(c) The vapour pressure of a liquid subjected to pressure 166
4B. 2 The location of phase boundaries 167
(a) The slopes of the phase boundaries 167
(b) The solid-liquid boundary 168
(c) The liquid-vapour boundary 169
(d) The solid-vapour boundary4B.3 The Ehrenfest classification of phase transition(a) The thermodynamic basis(b) Molecular interpretation171Checklist of concepts172
173
Checklist of equations 173
Discussion questions, exercises, and problems 174
CHAPTER 5 Simple mixtures 178
Topic 5A The thermodynamic description of mixtures 180
5A.1 Partial molar quantities 180
(a) Partial molar volume 181
(b) Partial molar Gibbs energies 182(c) The wider significance of the chemical potential
(d) The Gibbs-Duhem equation
(d) The Gbbs-Duhen equation 183183
5A.2 The thermodynamics of mixing 184
(a) The Gibbs energy of mixing of perfect gases
(b) Other thermodynamic mixing functions 186
5A. 3 The chemical potentials of liquids 187
(a) Ideal solutions 187
(b) Ideal-dilute solutions188
Checklist of concepts 190
Checklist of equations 190
Topic 5B The properties of solutions 192
5B. 1 Liquid mixtures 192
(a) Ideal solutions 192
(b) Excess functions and regular solutions
5B. 2 Colligative properties
(a) The common features of colligative properties
(b) The elevation of boiling point(c) The depression of freezing point(d) Solubility
(e) Osmosis193195
Checklist of concepts 201
Checklist of equations 201
Topic 5C Phase diagrams of binary systems 202
5C. 1 Vapour pressure diagrams 202
(a) The composition of the vapour 202(b) The interpretation of the diagrams(c) The lever rule203205
5C. 2 Temperature-composition diagrams 206
(a) The distillation of mixtures 206
(b) Azeotropes 207
(c) Immiscible liquids 208
5C. 3 Liquid-liquid phase diagrams 208
(a) Phase separation 208
(b) Critical solution temperatures 209
(c) The distillation of partially miscible liquids 211
5C. 4 Liquid-solid phase diagrams 212
(a) Eutectics 212
(b) Reacting systems 214
(c) Incongruent melting 214
Checklist of concepts 215
Checklist of equations 215
Topic 5D Phase diagrams of ternary systems 216
5D. 1 Triangular phase diagrams 216
5D. 2 Ternary systems 217
(a) Partially miscible liquids 217
(b) Ternary solids 218
Checklist of concepts 219
Topic 5E Activities 220
5E.1 The solvent activity 220
5E. 2 The solute activity 221
(a) Ideal-dilute solutions 221
(b) Real solutes 221
(c) Activities in terms of molalities 222
(d) The biological standard state 222
5E. 3 The activities of regular solutions 223
Checklist of concepts 224
Checklist of equations 225
Topic 5F The activities of ions 226
5F. 1 Mean activity coefficients 226
(a) The Debye-Hückel limiting law 227
(b) Extensions of the limiting law 228
5F. 2 The Debye-Hückel theory 229
(a) The work of charging 229
(b) The potential due to the charge distribution 229
(c) The activity coefficient 230
Checklist of concepts 232
Checklist of equations 232
Discussion questions, exercises, and problems 233
CHAPTER 6 Chemical equilibrium 244
Topic 6A The equilibrium constant 245
6A. 1 The Gibbs energy minimum 245
(a) The reaction Gibbs energy 245
(b) Exergonic and endergonic reactions 246
6A. 2 The description of equilibrium 247
(a) Perfect gas equilibria 247
(b) The general case of a reaction 248
(c) The relation between equilibrium constants 251
(d) Molecular interpretation of the equilibrium constant 251
Checklist of concepts 252
Checklist of equations 252
Topic 6B The response of equilibria to the conditions 254
6B.1 The response to pressure 254
6B.2 The response to temperature 255
(a) The van't Hoff equation 256
(b) The value of K at different temperatures 257
Checklist of concepts 258
Checklist of equationsTopic 6C Electrochemical cells259
6C. 1 Half-reactions and electrodes 259
6 C .2 Varieties of cells 260(a) Liquid junction potentials
(b) Notation
261C. 3 The cell potential
(a) The Nernst equation
(b) Cells at equilibrium6 C .4 The determination of thermodynamic functions
Checklist of concepts
Checklist of equations
Topic 6D Electrode potentials 2672612612626D. 1 Standard potentials
(a) The measurement procedure 268267
(b) Combining measured values
6D.2 Applications of standard potentials269
(a) The electrochemical series 269
(b) The determination of activity coefficients 270
(c) The determination of equilibrium constants 270
Checklist of concepts
Checklist of equations
Discussion questions, exercises, and problems 272
PART 2 Structure 279
CHAPTER 7 Introduction to quantum theory 281
Topic 7A The origins of quantum mechanics 282
7A. 1 Energy quantization 282
(a) Black-body radiation 282
(b) Heat capacities 285
(c) Atomic and molecular spectra 286
7A. 2 Wave-particle duality 287
(a) The particle character of electromagnetic radiation 287
(b) The wave character of particles 289
Checklist of concepts 290
Checklist of equations 291
Topic 7B Dynamics of microscopic systems 292
7B. 1 The Schrödinger equation 292
7B. 2 The Born interpretation of the wavefunction 293
(a) Normalization 295
(b) Constraints on the wavefunction 296
(c) Quantization 297
7B. 3 The probability density 297
Checklist of concepts 298
Checklist of equations 298
Topic 7C The principles of quantum theory 299
7C. 1 Operators 299
(a) Eigenvalue equations 299
(b) The construction of operators 300
(c) Hermitian operators 302
(d) Orthogonality 303
7C. 2 Superpositions and expectation values 304
7C. 3 The uncertainty principle 305
$7 C .4$ The postulates of quantum mechanics 308
Checklist of concepts 308
Checklist of equations 308
Discussion questions, exercises, and problems 310
Mathematical background 3 Complex numbers 314
CHAPTER 8 The quantum theory of motion 316
Topic 8A Translation 317
8A. 1 Free motion in one dimension 317
8A. 2 Confined motion in one dimension 318
(a) The acceptable solutions 318
b) The properties of the wavefunctions 320
(c) The properties of observables 321
8A. 3 Confined motion in two or more dimensions 322
(a) Separation of variables 322
(b) Degeneracy 324
8A. 4 Tunnelling 324
Checklist of concepts 327
Checklist of equations 328
Topic 8B Vibrational motion 329
8B.1 The harmonic oscillator 329
(a) The energy levels 330
(b) The wavefunctions 331
8B. 2 The properties of oscillators 333
(a) Mean values 334
(b) Tunnelling 335
Checklist of concepts 336
Checklist of equations 336
Topic 8C Rotational motion 337
8C. 1 Rotation in two dimensions 337
a) The qualitative origin of quantized rotation 337
(b) The solutions of the Schrödinger equation 338
(c) Quantization of angular momentum 340
8C. 2 Rotation in three dimensions 342
(a) The wavefunctions 342
(b) The energies 344
(c) Angular momentum 345
(d) Space quantization 345
(e) The vector model 346
Checklist of concepts 347
Checklist of equations 347
Discussion questions, exercises, and problems 349
Mathematical background 4 Differential equations 354
CHAPTER 9 Atomic structure and spectra 356
Topic 9A Hydrogenic atoms 357
9A. 1 The structure of hydrogenic atoms 358
(a) The separation of variables 358
(b) The radial solutions 359
9A. 2 Atomic orbitals and their energies 361
(a) The specification of orbitals 361
(b) The energy levels 362
(c) Ionization energies 362
(d) Shells and subshells 363
(e) \boldsymbol{s} Orbitals 364
(f) Radial distribution functions 365
(g) p Orbitals 367
(h) d Orbitals 368
Checklist of concepts 368
Checklist of equations 369
Topic 9B Many-electron atoms 370
9B. 1 The orbital approximation 370
(a) The helium atom 371
(b) Spin 371
(c) The Pauli principle 372
(d) Penetration and shielding 374
9B. 2 The building-up principle 375
(a) Hund's rules 376
(b) Ionization energies and electron affinities 377
9B. 3 Self-consistent field orbitals 379
Checklist of concepts 380
Checklist of equations 380
Topic 9C Atomic spectra 381
9 C .1 The spectra of hydrogenic atoms 381
9 C .2 The spectra of complex atoms 382
(a) Singlet and triplet states 383
(b) Spin-orbit coupling 383
(c) Term symbols 386
(d) Hund's rules 389
(e) Selection rules 389
Checklist of concepts 389
Checklist of equations 390
Discussion questions, exercises, and problems 391
Mathematical background 5 Vectors 395
CHAPTER 10 Molecular structure 398
Topic 10A Valence-bond theory 399
10A. 1 Diatomic molecules 400
(a) The basic formulation 400
(b) Resonance 401
10A.2 Polyatomic molecules 402
(a) Promotion 403
(b) Hybridization 403
Checklist of concepts 405
Checklist of equations 406
Topic 10B Principles of molecular orbital theory 407
10B. 1 Linear combinations of atomic orbitals 407
(a) The construction of linear combinations 407
(b) Bonding orbitals 409
(c) Antibonding orbitals 411
10B. 2 Orbital notation 412
Checklist of concepts 412
Checklist of equations 412
Topic 10C Homonuclear diatomic molecules 413
10C. 1 Electron configurations 413
(a) σ Orbitals and π orbitals 413
(b) The overlap integral 415
(c) Period 2 diatomic molecules 416
10C. 2 Photoelectron spectroscopy 418
Checklist of concepts 419
Checklist of equations 419
Topic 10D Heteronuclear diatomic molecules 420
10D. 1 Polar bonds 420
(a) The molecular orbital formulation 420
(b) Electronegativity 421
10D. 2 The variation principle 422
(a) The procedure 423
(b) The features of the solutions 424
Checklist of concepts 425
Checklist of equations 426
Topic 10E Polyatomic molecules 427
10E. 1 The Hückel approximation 427
(a) An introduction to the method 428
(b) The matrix formulation of the method 428
10E. 2 Applications 430
(a) Butadiene and π-electron binding energy 430
(b) Benzene and aromatic stability 431
10E. 3 Computational chemistry 432
a) Semi-empirical and ab initio methods 433
(b) Density functional theory 434
(c) Graphical representations 434
Checklist of concepts 435
Checklist of equations 435
Discussion questions, exercises, and problems 436
Mathematical background 6 Matrices 443
CHAPTER 11 Molecular symmetry 446
Topic 11A Symmetry elements 447
11A. 1 Symmetry operations and symmetry elements 448
11A. 2 The symmetry classification of molecules 449
(a) The groups C_{1}, C_{i}, and C_{s} 450
(b) The groups $C_{n}, C_{n y}$ and $C_{n h}$ 451
(c) The groups $D_{n}, D_{n h}$, and $D_{n d}$ 452
(d) The groups S_{n} 452
(e) The cubic groups 453
(f) The full rotation group 454
1A. 3 Some immediate consequences of symmetry 454
(a) Polarity 454
(b) Chirality 455
Checklist of concepts 455
Checklist of operations and elements 456
Topic 11B Group theory 457
11B. 1 The elements of group theory 457
11B.2 Matrix representations 458
(a) Representatives of operations 459
(b) The representation of a group 459
(c) Irreducible representations 459
(d) Characters and symmetry species 460
11B. 3 Character tables 461
(a) Character tables and orbital degeneracy 461
(b) The symmetry species of atomic orbitals 462
(c) The symmetry species of linear combinations of orbitals 463
Checklist of concepts 464
Checklist of equations 464
Topic 11C Applications of symmetry 465
11C. 1 Vanishing integrals 465
(a) Integrals over the product of two functions 466
(b) Decomposition of a direct product 467
(c) Integrals over products of three functions 467
11C.2 Applications to orbitals 468
(a) Orbital overlap 468
(b) Symmetry-adapted linear combinations 468
11C. 3 Selection rules 469
Checklist of concepts 470
Checklist of equations 470
Discussion questions, exercises, and problems 471
CHAPTER 12 Rotational and vibrational spectra 474
Topic 12A General features of molecular spectroscopy 476
12A. 1 The absorption and emission of radiation 477
(a) Stimulated and spontaneous radiative processes 477
(b) Selection rules and transition moments 478
(c) The Beer-Lambert law 479
12A. 2 Spectral linewidths 480
(a) Doppler broadening 481
(b) Lifetime broadening 482
12A. 3 Experimental techniques 482
(a) Sources of radiation 482
(b) Spectral analysis 483
(c) Detectors 485
(d) Examples of spectrometers 485
Checklist of concepts 486
Checklist of equations 487
Topic 12B Molecular rotation 488
2B. 1 Moments of inertia 488
2B. 2 The rotational energy levels 490
(a) Spherical rotors 490
(b) Symmetric rotors 491
(c) Linear rotors 493
(d) Centrifugal distortion 493
Checklist of concepts 494
Checklist of equations 494
Topic 12C Rotational spectroscopy 495
12C. 1 Microwave spectroscopy 495
(a) Selection rules 495
(b) The appearance of microwave spectra 497
12C. 2 Rotational Raman spectroscopy 498
12C. 3 Nuclear statistics and rotational states 500
Checklist of concepts 502
Checklist of equations 502
Topic 12D Vibrational spectroscopy of diatomic molecules 503
12D.1 Vibrational motion 503
12D. 2 Infrared spectroscopy 505
12D. 3 Anharmonicity 506
(a) The convergence of energy levels 506
(b) The Birge-Sponer plot 508
12D. 4 Vibration-rotation spectra 509
(a) Spectral branches 509
(b) Combination differences 510
12D.5 Vibrational Raman spectra 511
Checklist of concepts 512
Checklist of equations 512
Topic 12E Vibrational spectroscopy of polyatomic molecules 514
12E. 1 Normal modes 514
12E.2 Infrared absorption spectra 516
12E. 3 Vibrational Raman spectra 518
(a) Depolarization 518
(b) Resonance Raman spectra 518
(c) Coherent anti-Stokes Raman spectroscopy 519
12E. 4 Symmetry aspects of molecular vibrations 520
(a) Infrared activity of normal modes 520
(b) Raman activity of normal modes 521
Checklist of concepts 521
Checklist of equations 522
Discussion questions, exercises, and problems 523
CHAPTER 13 Electronic transitions 531
Topic 13A Electronic spectra 532
13A. 1 Diatomic molecules 533
(a) Term symbols 533
(b) Selection rules 535
(c) Vibrational structure 536
(d) Rotational structure 538
13A. 2 Polyatomic molecules 539
(a) d-Metal complexes 539
(b) $\pi^{*} \leftarrow \pi$ and $\pi^{*} \leftarrow \mathrm{n}$ transitions 540
(c) Circular dichroism 541
Checklist of concepts 542
Checklist of equations 542
Topic 13B Decay of excited states 543
13B. 1 Fluorescence and phosphorescence 543
13B. 2 Dissociation and predissociation 545
Checklist of concepts 546
Topic 13C Lasers 547
13C. 1 Population inversion 547
13C. 2 Cavity and mode characteristics 549
13C. 3 Pulsed lasers 550
13C. 4 Time-resolved spectroscopy 552
13C. 5 Examples of practical lasers 552
(a) Gas lasers
(b) Exciplex lasers
(c) Dye lasers
(d) Vibronic lasers
Checklist of concepts
553
Checklist of equations555
Discussion questions, exercises, and problems 556
CHAPTER 14 Magnetic resonance 560
Topic 14A General principles 561
14A. 1 Nuclear magnetic resonance 561
(a) The energies of nuclei in magnetic fields 561
(b) The NMR spectrometer 563
14A. 2 Electron paramagnetic resonance 564
(a) The energies of electrons in magnetic fields 565
(b) The EPR spectrometer 566
Checklist of concepts567
Checklist of equations 567
Topic 14B Features of NMR spectra 568
14B. 1 The chemical shift 568
14B.2 The origin of shielding constants 570
(a) The local contributionb) Neighbouring group contribu(c) The solvent contribution57057114B. 3 The fine structure
(a) The appearance of the spectrum 573573
(b) The magnitudes of coupling constants 575
(c) The origin of spin-spin coupling 576
(d) Equivalent nuclei 577
e) Strongly coupled nuclei 579
14B. 4 Conformational conversion and exchange processes 580
Checklist of concepts
Checklist of equations581581
Topic 14C Pulse techniques in NMR 582
14C. 1 The magnetization vector 582
(a) The effect of the radiofrequency field 583
(b) Time- and frequency-domain signals 584
14C. 2 Spin relaxation 585
a) Longitudinal and transverse relaxation
a) Longitudinal and transverse relaxation 585(b) The measurement of T_{1} and T_{2}
14C. 3 Spin decoupling588
14C. 4 The nuclear Overhauser effect 589
14C. 5 Two-dimensional NMR 590
14C. 6 Solid-state NMR 592
Checklist of concepts 593
Checklist of equations 593
Topic 14D Electron paramagnetic resonance 594
14D. 1 The g-value 594
14D. 2 Hyperfine structure 595
(a) The effects of nuclear spin 595
(b) The McConnell equation 596
(c) The origin of the hyperfine interaction 597
Checklist of concepts 598
Checklist of equations 598
Discussion questions, exercises, and problems 599
CHAPTER 15 Statistical thermodynamics 604
Topic 15A The Boltzmann distribution 605
15A. 1 Configurations and weights 605
(a) Instantaneous configurations 605
(b) The most probable distribution 607
(c) The relative population of states 608
15A.2 The derivation of the Boltzmann distribution 608
(a) The role of constraints 609
(b) The values of the constants 610
Checklist of concepts 611
Checklist of equations 611
Topic 15B Molecular partition functions 612
15B.1 The significance of the partition function 612
15B.2 Contributions to the partition function 614
(a) The translational contribution 615
(b) The rotational contribution 616
(c) The vibrational contribution 620
(d) The electronic contribution 621
Checklist of concepts 622
Checklist of equations 622
Topic 15C Molecular energies 624
15C. 1 The basic equations 624
15C. 2 Contributions of the fundamental modes of motion 625
(a) The translational contribution 625
(b) The rotational contribution 625
(c) The vibrational contribution 626
(d) The electronic contribution 627
(e) The spin contribution 628
Check list of concepts 628
Checklist of equations 628
Topic 15D The canonical ensemble 630
15D. 1 The concept of ensemble 630
(a) Dominating configurations 631
(b) Fluctuations from the most probable distribution 631
15D. 2 The mean energy of a system 632
15D. 3 Independent molecules revisited 633
15D. 4 The variation of energy with volume 633
Checklist of concepts 635
Checklist of equations 635
Topic 15E The internal energy and the entropy 636
15E. 1 The internal energy 636
(a) The calculation of internal energy 636
(b) Heat capacity 637
15E. 2 The entropy 638
(a) Entropy and the partition function 638

(b) The translational contribution	640
(c) The rotational contribution	641
(d) The vibrational contribution	642
(e) Residual entropies	642
Checklist of concepts	643
Checklist of equations	644
Topic 15F Derived functions	645
15F. 1 The derivations	645
5F. 2 Equilibrium constants	647
(a) The relation between K and the partition function	647
(b) A dissociation equiliibrium	648
(c) Contributions to the equilibrium constant	648
Checklist of concepts	650
Checklist of equations	650
Discussion questions, exercises, and problems	651
CHAPTER 16 Molecular interactions	659
Topic 16A Electric properties of molecules	660
16A.1 Electric dipole moments	660
16A.2 Polarizabilities	663
16A.3 Polarization	664
(a) The frequency dependence of the polarization	664
(b) Moiar poiarlzation	665
Checklist of concepts	667
Checklist of equations	667
Topic 16B Interactions between molecules	668
16B. 1 Interactions between partial charges	668
16B.2 The interactions of dipoles	669
(a) Charge-dipole interactions	669
(b) Dipole-dipole interactions	670
(c) Dipole-induced dipole interactions	673
(d) Induced dipole-induced dipole interactions	673
16B.3 Hydrogen bonding	674
16B.4 The hydrophobic interaction	675
16B.5 The total interaction	676
Checklist of concepts	678
Checklist of equations	678
Topic 16C Liquids	680
16C. 1 Molecular interactions in liquids	680
La) Theradial distribution function	680
(b) The calculation of $g(r)$	681
(c) The thermodynamic properties of liquids	682
16C.2 The liquid-vapour interface	683
(a) Surface tension	683
(b) Curved surfaces	684
(c) Capillary action	685
16C. 3 Surface films	686
(a) Surface pressure	686
(b) The thermodynamics of surface layers	687
16C.4 Condensation	689
Checklist of concepts	689
Checklist of equations	690
Discussion questions, exercises, and problems	691

CHAPTER 17 Macromolecules and self-assembly	696
Topic 17A The structures of macromolecules	697
17A. 1 The different levels of structure	697
17A. 2 Random coils	698
(a) Measures of size	699
(b) Constrained chains	702
(c) Partly rigid coils	702
17A.3 BIologicalmacromolecules	703
(a) Proteins	704
(b) Nucleic acids	705
Checklist of concepts	709
Checklist of equations	706
Topic 17B Properties of macromolecules	708
17B. 1 Mechanical properties	708
(a) Conformational entropy	708
(b) Elastomers	709
17B. 2 Thermal properties	710
178.3 Electrical properties	712
Checklist of concepts	712
Checktist of equations	713
Topic 17C Self-assembly	714
17C. 1 Collolds	714
(a) Classification and preparation	714
(b) Structure and stability	715
(c) The electicaldouble layer	715
17C. 2 Micelles and biological membranes	711
(a) Micelle formation	717
(b) Bilayers, vesicles, and membranes	719
(c) Self-assembled monolayers	720
Checklist of concepts	720
Checklist of equations	721
Topic 17D Determination of size and shape	722
17D.1 Mean molar masses	722
1702 Thetechniques	724
(a) Mass spectrometry	724
(b) Laser light scattering	725
(c) Sedimentation	726
(d) Viscosity	728
Checklist of concepts	730
Checklist of equations	730
Discussion questions, exercises, and_problems	131
CHAPTER 18 Solids	736
Topic 18A Crystal structure	737
18A.1 Periodic crystal lattices	737
18A. 2 The identification of lattice planes	740
(a) The Miller indices	740
(b) The separation of planes	741
18A.3 X-ray crystallography	742
(a) X-ray diffraction	742
(b) Bragg's law	744
(c) Scattering factors	745

(d) The electron density	745
(e) Determination of the structure	748
18A.4 Neutron and electron diffraction	749
Cherklist of concents	750
Checklist of equations	751
Topic 18B Bonding in solids	752
18B.1 Metallic solids	752
(a) Close packing	752
(b) Electronic structure of metals	754
18 B .2 lonic solids	756
(a) Structure	756
(b) Energetics	757
188.3 Covalent and molecular solids	760
Cherklist of concepts	761
Checklist of equations	76

Topic 18C Mechanical, electrical, and magnetic properties of solids	762
18C.1 Mechanical properties	762
18 C .2 Electrical properties	764
[a) Conductors	765

Checklist of concepts

Checklist of equations	811
Discussion questions, exercises, and problems	811

CHAPTER 20 Chemical kinetics 818

Topic 20A The rates of chemical reactions	820

20 A .1 Monitoring the progress of a reaction 820
(a) General considerations 820
(b) Special techniques 827

20A. 2 The rates of reactions 822

(a) The definition of rate	822
(b) Rate laws and rate constants	823
(a) Real	824

(c) Reaction order	824
(d) The determination of the rate law	824

Checklist of concepts	826

Checklist of equations 826

Topic 20B Integrated rate laws	827
20B.1 First-order reactions	827
20B.2 Second-order reactions	829
Checklist of concepts	831
Checklist of equations	832

Topic 20C Reactions approaching equilibrium	833

20 C .1 First-order reactions approaching equilibrium 833

20 2. 2 Relaxation methods 834

Checklist of concepts	836
Checklist of equations	836

Topic 20D The Arrhenius equation 837

20 D .1 The temperature dependence of reaction rates	837
20 D .2 The interpretation of the Arrhenius parameters	839

(a) A firstiook at the energy requirements of reactions 839
(b) The effect of a catalyst on the activation energy 840

Checklist of concepts 841
Checklist of equations 841

Topic 20E Reaction mechanisms	842

20 E. 1 Elementary reactions 842
20 E. 2 Consecutive elementary reactions 843
20E.3 The steady-state approximation 844

20.4 The rate-determining step	845
$20 E .5$ Pre-equilibila	846
L20F6 K Kinetic and thermodynamic control of reactions	847
Ehecklist of concepts	848
Checklist of equations	848
Topic 20F Examples of reaction mechanisms	849
	849
20F. 2 Polymerization kinetics	850
(a) Stepwise polymerization	851
(b) Chain polymerization	852
Checklist of concepts	854
Checklist of equations	854
Topic 20G Photochemistry	855
$20 \mathrm{G.1}$ Photochemical processes	855
20 G .2 The primary quantum yield	856
20G.3 Mechanism of decay of excited singlet states	857
20604-0uenching	858
20G.5 Resonance energy transfer	860
Checklist of concepts	861
theckilist of equations	862
Topic 20H Enzymes	863
20H. 1 Features of enzymes	863
20H. 2 The Michaelis-Menten mechanism	864
20H.3 The catalytic efficiency of enzymes	866
20H. 4 Mechanisms of enzyme inhibition	866
Checklist of concepts	869
Checklist of equations	869
Discussion questions, exercises, and problems	870
CHAPTER 21 Reaction dynamics	879
Topic 21A Collision theory	881
LIA.I Reactive encounters	881
(a) Collision rates in gases	882
b) The energy requirement	883
c) Thesteric requirement	885
21A. 2 The RRK model	886
Checklist of concepts	888
Checklist of equations	888
Topic 21B Diffusion-controlled reactions	889
218.1 Reactions in solution	889
(a) Classes of reaction	889
(b) Diffusion and reaction	890
21B.2 The material-balance equation	891
(a) The formulation of the equation	891
(b) Solutions of the equation	892
Checklist of concepts	892
Checklist of equations	893
Tonic 218 Transition-state theory	894
21C. 1 The Eyring equation	894
(a) The formulation of the equation	894
(b) The rate of decay of the activated complex	895
(c) the concentration of the activated complex	$89 \square$

(d) The rate constant	896
(e) Observation and manipulation of the activated complex	897
21 C .2 Thermodynamic aspects	899
(a) Activation parameters	899
(b) Reactions between ions	900
21 C .3 The kineticisotope effect	901
Checklist of concepts	903
Checklist of equations	903

Topic 21D The dynamics of molecular collisions	904
21D. 1 Molecular beams	904
(a) Techniques	904
(b) Experimental results	905
21D. 2 Reactive collisions	907
(a) Probes of reactive collisions	907
(b) State-to-state reaction dynamics	907
21D.3 Potential energy surfaces	908
21D. 4 Some results from experiments and calculations	910
(a) The direction of attack and separation	910
(b) Attractive and repulsive surfaces	911
(c) Classical trajectories	912
(d) Quantum mechanical scattering theory	912

Checklist of equations913
Topic 21E Electron transfer in homogeneous systems 914
21E. 1 The electron transfer rate law 914
915
(a) The role of electron tunnelling
(b) The reorganization energy 916
Checklist of equations 919
Topic 21F Processes at electrodes 920 21F. 1 The electrode-solution interface 920

(a) The Butler-Volmer equation	921
(b) Tafel plots	924

21F.3 Voltammetry 925
21F. 4 Electrolysis 927
21F.5 Working galvanic cells 927
Checklist of concepts 928
Checklist of equations 929
Discussion questions, exercises, and problems 930
CHAPTER 22 Processes on solid surfaces 937
Topic 22A An introduction to solid surfaces 938
22A. 1 Surface growth 938
22A.3 Experimental techniques 939
(a) Microscopy 940
(c) Diffraction techniques 942
(d) Determination of the extent and rates of adsorptionand desorption944
Checklist of concepts 945
Checklist of equations 945

TABLES

Table B. 1 Analogies between translation and rotation 11
Table 1A. 1 Pressure units 30
Table 1A. 2 The gas constant ($R=N_{\mathrm{A}} k$) 34
Table 1B. 1 Collision cross-sections, σ / nm^{2} 42
Table 1C. 1 Second virial coefficients, $B /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$ 47
Table 1C. 2 Critical constants of gases 48
Table 1C. 3 van der Waals coefficients 49
Table 1C. 4 Selected equations of state 50
Table 2A. 1 Varieties of work 69
Table 2B. 1 Temperature variation of molar heat capacities, $C_{p, \mathrm{~m}} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)=a+b T+c / T^{2}$ 78
Table 2C. 1 Standard enthalpies of fusion and vaporization at the transition temperature, $\Delta_{\text {trs }} H^{\ominus} /\left(\mathrm{kJmol}^{-1}\right)$ 81
Table 2C. 2 Enthalpies of transition 81
Table 2C. 3 Lattice enthalpies at 298 K , $\Delta H_{\mathrm{L}} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$. See Table 18B.4. 83
Table 2C. 4 Standard enthalpies of formation $\left(\Delta_{\mathrm{f}} H^{\ominus}\right)$ and combustion $\left(\Delta_{\mathrm{c}} H^{\ominus}\right)$ of organic compounds at 298 K 83
Table 2C. 5 Standard enthalpies of formation of inorganic compounds at 298 K , $\Delta_{\mathrm{f}} \mathrm{H}^{\ominus} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ 84
Table 2C. 6 Standard enthalpies of formation of organic compounds at $298 \mathrm{~K}, \Delta_{\mathrm{f}} \mathrm{H}^{\ominus} /$ ($\mathrm{kJ} \mathrm{mol}^{-1}$). See Table 2C.4. 84
Table 2D. 1 Expansion coefficients (α) and isothermal compressibilities $\left(\kappa_{T}\right)$ at 298 K 93
Table 2D. 2 Inversion temperatures (T_{I}), normal freezing $\left(T_{\mathrm{f}}\right)$ and boiling (T_{b}) points, and Joule-Thomson coefficient (μ) at 1 atm and 298 K 97
Table 3A. 1 Standard entropies (and temperatures) of phase transitions, $\Delta_{\text {trs }} S^{\ominus} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$ 122
Table 3A. 2 The standard enthalpies and entropies of vaporization of liquids at their normal boiling points 122
Table 3B. 1 Standard Third-Law entropies at $298 \mathrm{~K}, S_{\mathrm{m}}^{\ominus} /\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$. See Tables 2C. 4 and 2C.5. 129
Table 3C. 1 Standard Gibbs energies of formation at $298 \mathrm{~K}, \Delta_{\mathrm{f}} G^{\ominus} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$. See Tables 2C. 4 and 2C.5. 136
Table 3D. 1 The Maxwell relations 141
Table 3D. 2 The fugacity of nitrogen at 273 K , f / atm 147
Table 5A. 1 Henry's law constants for gases in water at $298 \mathrm{~K}, \mathrm{~K} /\left(\mathrm{kPakg} \mathrm{mol}^{-1}\right)$ 190
Table 5B. 1 Freezing-point $\left(K_{f}\right)$ and boiling-point (K_{b}) constants 197
Table 5E. $1 \quad$ Activities and standard states: a summary 224
Table 5F. 1 Ionic strength and molality, $I=k b / b^{\ominus}$ 228
Table 5F. 2 Mean activity coefficients in water at 298 K 228
Table 6C. 1 Varieties of electrode 259
Table 6D. 1 Standard potentials at $298 \mathrm{~K}, E^{\ominus} / \mathrm{V}$ 267
Table 6D. 2 The electrochemical series of the metals 270
Table 7B. 1 The Schrödinger equation 293
Table 7C. 1 Constraints of the uncertainty principle 307
Table 8B. 1 The Hermite polynomials, $H_{\nu}(y)$ 331
Table 8B. 2 The error function, $\operatorname{erf}(z)$ 336
Table 8C. 1 The spherical harmonics, $Y_{l, m_{l}}(\theta, \phi)$ 343
Table 9A. 1 Hydrogenic radial wavefunctions, $R_{n, l}(r)$ 361
Table 9B. 1 Effective nuclear charge, $Z_{\text {eff }}=Z-\sigma$ 375
Table 9B. 2 First and subsequent ionization energies, $I /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ 378
Table 9B. 3 Electron affinities, $E_{\mathrm{a}} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ 378
Table 10A. 1 Some hybridization schemes 405
Table 10C. 1 Bond lengths, R_{e} / pm 418
Table 10C. 2 Bond dissociation energies, $D_{0} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ 418
Table 10D. 1 Pauling electronegativities 421
Table 11A. 1 The notations for point groups 450
Table 11B. 1 The $C_{3 \mathrm{v}}$ character table; see Part 4 of Resource section.461
Table 11B. 2 The $C_{2 v}$ character table; see Part 4 of Resource section. 462
Table 12B. 1 Moments of inertia 489
Table 12D. 1 Properties of diatomic molecules 510
Table 12E. 1 Typical vibrational wavenumbers, $\tilde{v} / \mathrm{cm}^{-1}$ 517
Table 13A. 1 Colour, wavelength, frequency, and energy of light 533
Table 13A. 2 Absorption characteristics of some groups and molecules 539
Table 13C. 1 Characteristics of laser radiation and their chemical applications 547
Table 14A. 1 Nuclear constitution and the nuclear spin quantum number 562
Table 14A. 2 Nuclear spin properties 562
Table 14D. 1 Hyperfine coupling constants for atoms, a / mT 597
Table 15B. 1 Rotational temperatures of diatomic molecules 618
Table 15B. 2 Symmetry numbers of molecules 619
Table 15B. 3 Vibrational temperatures of diatomic molecules 621
Table 16A. 1 Dipole moments (μ) and polarizability volumes (α^{\prime}) 661
Table 16B. 1 Interaction potential energies 672
Table 16B. 2 Lennard-Jones parameters for the $(12,6)$ potential 677
Table 16C. 1 Surface tensions of liquids at 293 K , $\gamma /\left(\mathrm{mN} \mathrm{m}^{-1}\right)$ 683
Table 17C. 1 Variation of micelle shape with the surfactant parameter 718
Table 17D. 1 Radius of gyration 725
Table 17D. 2 Frictional coefficients and molecular geometry 727
Table 17D. 3 Intrinsic viscosity 729
Table 18A. 1 The seven crystal systems 739
Table 18B. 1 The crystal structures of some elements 753
Table 18B. 2 Ionic radii, r / pm 757
Table 18B. 3 Madelung constants 758
Table 18B. 4 Lattice enthalpies at $298 \mathrm{~K}, \Delta H_{\mathrm{L}} /$ ($\mathrm{kJ} \mathrm{mol}^{-1}$) 759
Table 18C. 1 Magnetic susceptibilities at 298 K 769
Table 19A. 1 Transport properties of gases at 1 atm 791
Table 19B. 1 Viscosities of liquids at 298 K , $\eta /\left(10^{-3} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right)$ 799
Table 19B. 2 Ionic mobilities in water at 298 K , $u /\left(10^{-8} \mathrm{~m}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1}\right)$ 801
Table 19B. 3 Diffusion coefficients at 298 K , $D /\left(10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)$ 803
Table 20B. 1 Kinetic data for first-order reactions 828
Table 20B. 2 Kinetic data for second-order reactions 829
Table 20B. 3 Integrated rate laws 831
Table 20D. 1 Arrhenius parameters 838
Table 20G. 1 Examples of photochemical processes 855
Table 20G. 2 Common photophysical processes 856
Table 20G. 3 Values of R_{0} for some donor-acceptor pairs 861
Table 21A. 1 Arrhenius parameters for gas-phase reactions 885
Table 21B. 1 Arrhenius parameters for solvolysis reactions in solution 890
Table 21F. 1 Exchange current densities and transfer coefficients at 298 K 924
Table 22A. 1 Maximum observed standard enthalpies of physisorption, $\Delta_{\mathrm{ad}} H^{\ominus} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$, at 298 K 939
Table 22A. 2 Standard enthalpies of chemisorption, $\Delta_{\mathrm{ad}} H^{\ominus} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$, at 298 K 940
Table 22C. 1 Chemisorption abilities 958
Table A. 1 Some common units 965
Table A. 2 Common SI prefixes 965
Table A. 3 The SI base units 965
Table A. 4 A selection of derived units 965
Table 0.1 Physical properties of selected materials 967
Table 0.2 Masses and natural abundances of selected nuclides 968

CHEMIST'S TOOLKITS

A. 1 Quantities and units 6
7B. 1 Spherical polar coordinates 295
8C. 1 Cylindrical coordinates 339
9B. 1 Determinants 374
14B. 1 Dipolar fields 571
15A. 1 The method of undetermined multipliers 609
20B. 1 Integration by the method of partial fractions 830

Foundations

Chemistry is the science of matter and the changes it can undergo. Physical chemistry is the branch of chemistry that establishes and develops the principles of the subject in terms of the underlying concepts of physics and the language of mathematics. It provides the basis for developing new spectroscopic techniques and their interpretation, for understanding the structures of molecules and the details of their electron distributions, and for relating the bulk properties of matter to their constituent atoms. Physical chemistry also provides a window on to the world of chemical reactions, and allows us to understand in detail how they take place.

A Matter

Throughout the text we draw on a number of concepts that should already be familiar from introductory chemistry, such as the 'nuclear model' of the atom, 'Lewis structures' of molecules, and the 'perfect gas equation.' This Topic reviews these and other concepts of chemistry that appear at many stages of the presentation.

B Energy

Because physical chemistry lies at the interface between physics and chemistry, we also need to review some of the
concepts from elementary physics that we need to draw on in the text. This Topic begins with a brief summary of 'classical mechanics', our starting point for discussion of the motion and energy of particles. Then it reviews concepts of 'thermodynamics' that should already be part of your chemical vocabulary. Finally, we introduce the 'Boltzmann distribution' and the 'equipartition theorem', which help to establish connections between the bulk and molecular properties of matter.

C Waves

This Topic describes waves, with a focus on 'harmonic waves', which form the basis for the classical description of electromagnetic radiation. The classical ideas of motion, energy, and waves in this Topic and Topic B are expanded with the principles of quantum mechanics (Chapter 7), setting the stage for the treatment of electrons, atoms, and molecules. Quantum mechanics underlies the discussion of chemical structure and chemical change, and is the basis of many techniques of investigation.

A Matter

```
Contents
A.1 Atoms 2
    (a) The nuclear model 2
    (b) The periodic table }
    (c) lons
A.2 Molecules
    (a) Lewis structures
        Brief illustration A.1: Octet expansion
    (b) VSEPR theory
        Brief illustration A.2: Molecular shapes 4
    (c) Polar bonds 4
        Brief illustration A.3: Nonpolar molecules with
        polar bonds
A.3 Bulk matter
    (a) Properties of bulk matter
        Brief illustration A.4: Volume units
    (b) The perfect gas equation
        Example A.1: Using the perfect gas equation 7
Checklist of concepts
    7
Checklist of equations 8
```

Why do you need to know this material?
Because chemistry is about matter and the changes that it can undergo, both physically and chemically, the properties of matter underlie the entire discussion in this book.

What is the key idea?

The bulk properties of matter are related to the identities and arrangements of atoms and molecules in a sample.

What do you need to know already?
This Topic reviews material commonly covered in introductory chemistry.

The presentation of physical chemistry in this text is based on the experimentally verified fact that matter consists of atoms.

In this Topic, which is a review of elementary concepts and language widely used in chemistry, we begin to make connections between atomic, molecular, and bulk properties. Most of the material is developed in greater detail later in the text.

A. 1 Atoms

The atom of an element is characterized by its atomic number, Z, which is the number of protons in its nucleus. The number of neutrons in a nucleus is variable to a small extent, and the nucleon number (which is also commonly called the mass number), A, is the total number of protons and neutrons in the nucleus. Protons and neutrons are collectively called nucleons. Atoms of the same atomic number but different nucleon number are the isotopes of the element.

(a) The nuclear model

According to the nuclear model, an atom of atomic number Z consists of a nucleus of charge $+Z e$ surrounded by Z electrons each of charge $-e$ (e is the fundamental charge: see inside the front cover for its value and the values of the other fundamental constants). These electrons occupy atomic orbitals, which are regions of space where they are most likely to be found, with no more than two electrons in any one orbital. The atomic orbitals are arranged in shells around the nucleus, each shell being characterized by the principal quantum number, $n=1,2, \ldots$. A shell consists of n^{2} individual orbitals, which are grouped together into n subshells; these subshells, and the orbitals they contain, are denoted s, p, d, and f. For all neutral atoms other than hydrogen, the subshells of a given shell have slightly different energies.

(b) The periodic table

The sequential occupation of the orbitals in successive shells results in periodic similarities in the electronic configurations, the specification of the occupied orbitals, of atoms when they are arranged in order of their atomic number. This periodicity of structure accounts for the formulation of the periodic table (see the inside the back cover). The vertical columns of the periodic table are called groups and (in the modern convention) numbered from 1 to 18 . Successive rows of the periodic table are called periods, the number of the period being equal
to the principal quantum number of the valence shell, the outermost shell of the atom.

Some of the groups also have familiar names: Group 1 consists of the alkali metals, Group 2 (more specifically, calcium, strontium, and barium) of the alkaline earth metals, Group 17 of the halogens, and Group 18 of the noble gases. Broadly speaking, the elements towards the left of the periodic table are metals and those towards the right are non-metals; the two classes of substance meet at a diagonal line running from boron to polonium, which constitute the metalloids, with properties intermediate between those of metals and non-metals.

The periodic table is divided into $\mathrm{s}, \mathrm{p}, \mathrm{d}$, and f blocks, according to the subshell that is last to be occupied in the formulation of the electronic configuration of the atom. The members of the d block (specifically the members of Groups 3-11 in the d block) are also known as the transition metals; those of the f block (which is not divided into numbered groups) are sometimes called the inner transition metals. The upper row of the f block (Period 6) consists of the lanthanoids (still commonly the 'lanthanides') and the lower row (Period 7) consists of the actinoids (still commonly the 'actinides').

(c) Ions

A monatomic ion is an electrically charged atom. When an atom gains one or more electrons it becomes a negatively charged anion; when it loses one or more electrons it becomes a positively charged cation. The charge number of an ion is called the oxidation number of the element in that state (thus, the oxidation number of magnesium in Mg^{2+} is +2 and that of oxygen in O^{2-} is -2). It is appropriate, but not always done, to distinguish between the oxidation number and the oxidation state, the latter being the physical state of the atom with a specified oxidation number. Thus, the oxidation number of magnesium is +2 when it is present as Mg^{2+}, and it is present in the oxidation state Mg^{2+}.

The elements form ions that are characteristic of their location in the periodic table: metallic elements typically form cations by losing the electrons of their outermost shell and acquiring the electronic configuration of the preceding noble gas atom. Nonmetals typically form anions by gaining electrons and attaining the electronic configuration of the following noble gas atom.

A. 2 Molecules

A chemical bond is the link between atoms. Compounds that contain a metallic element typically, but far from universally, form ionic compounds that consist of cations and anions in a crystalline array. The 'chemical bonds' in an ionic compound
are due to the Coulombic interactions between all the ions in the crystal and it is inappropriate to refer to a bond between a specific pair of neighbouring ions. The smallest unit of an ionic compound is called a formula unit. Thus NaNO_{3}, consisting of a Na^{+}cation and a NO_{3}^{-}anion, is the formula unit of sodium nitrate. Compounds that do not contain a metallic element typically form covalent compounds consisting of discrete molecules. In this case, the bonds between the atoms of a molecule are covalent, meaning that they consist of shared pairs of electrons.
A note on good practice Some chemists use the term 'molecule' to denote the smallest unit of a compound with the composition of the bulk material regardless of whether it is an ionic or covalent compound and thus speak of 'a molecule of NaCl '. We use the term 'molecule' to denote a discrete covalently bonded entity (as in $\mathrm{H}_{2} \mathrm{O}$); for an ionic compound we use 'formula unit'.

(a) Lewis structures

The pattern of bonds between neighbouring atoms is displayed by drawing a Lewis structure, in which bonds are shown as lines and lone pairs of electrons, pairs of valence electrons that are not used in bonding, are shown as dots. Lewis structures are constructed by allowing each atom to share electrons until it has acquired an octet of eight electrons (for hydrogen, a duplet of two electrons). A shared pair of electrons is a single bond, two shared pairs constitute a double bond, and three shared pairs constitute a triple bond. Atoms of elements of Period 3 and later can accommodate more than eight electrons in their valence shell and 'expand their octet' to become hypervalent, that is, form more bonds than the octet rule would allow (for example, SF_{6}), or form more bonds to a small number of atoms (see Brief illustration A.1). When more than one Lewis structure can be written for a given arrangement of atoms, it is supposed that resonance, a blending of the structures, may occur and distribute multi-ple-bond character over the molecule (for example, the two Kekulé structures of benzene). Examples of these aspects of Lewis structures are shown in Fig. A.1.

Figure A. 1 Examples of Lewis structures.

Brief illustration A. 1 Octet expansion

Octet expansion is also encountered in species that do not necessarily require it, but which, if it is permitted, may acquire a lower energy. Thus, of the structures (1a) and (1b) of the SO_{4}^{2-} ion, the second has a lower energy than the first. The actual structure of the ion is a resonance hybrid of both structures (together with analogous structures with double bonds in different locations), but the latter structure makes the dominant contribution.

Self-test A. 1 Draw the Lewis structure for XeO_{4}.

(b) VSEPR theory

Except in the simplest cases, a Lewis structure does not express the three-dimensional structure of a molecule. The simplest approach to the prediction of molecular shape is valenceshell electron pair repulsion theory (VSEPR theory). In this approach, the regions of high electron density, as represented by bonds-whether single or multiple-and lone pairs, take up orientations around the central atom that maximize their separations. Then the position of the attached atoms (not the lone pairs) is noted and used to classify the shape of the molecule. Thus, four regions of electron density adopt a tetrahedral arrangement; if an atom is at each of these locations (as in CH_{4}), then the molecule is tetrahedral; if there is an atom at only three of these locations (as in NH_{3}), then the molecule is

Figure A. 2 The shapes of molecules that result from application of VSEPR theory.
trigonal pyramidal, and so on. The names of the various shapes that are commonly found are shown in Fig. A.2. In a refinement of the theory, lone pairs are assumed to repel bonding pairs more strongly than bonding pairs repel each other. The shape a molecule then adopts, if it is not determined fully by symmetry, is such as to minimize repulsions from lone pairs.

Brief illustration A. 2 Molecular shapes

In SF_{4} the lone pair adopts an equatorial position and the two axial S-F bonds bend away from it slightly, to give a bent seesaw shaped molecule (Fig. A.3).

Figure A. 3 (a) $\mathrm{In} \mathrm{SF}_{4}$ the lone pair adopts an equatorial position. (b) The two axial S-F bonds bend away from it slightly, to give a bent see-saw shaped molecule.

Self-test A. 2 Predict the shape of the SO_{3}^{2-} ion.
Answer: Trigonal pyramid

(c) Polar bonds

Covalent bonds may be polar, or correspond to an unequal sharing of the electron pair, with the result that one atom has a partial positive charge (denoted $\delta+$) and the other a partial negative charge ($\delta-$). The ability of an atom to attract electrons to itself when part of a molecule is measured by the electronegativity, χ (chi), of the element. The juxtaposition of equal and opposite partial charges constitutes an electric dipole. If those charges are $+Q$ and $-Q$ and they are separated by a distance d, the magnitude of the electric dipole moment, μ, is
$\mu=Q d \quad$ Definition Magnitude of the electric dipole moment (A.1)

Brief illustration A. 3
 Nonpolar molecules with
 polar bonds

Whether or not a molecule as a whole is polar depends on the arrangement of its bonds, for in highly symmetrical molecules there may be no net dipole. Thus, although the linear CO_{2} molecule (which is structurally OCO) has polar CO bonds, their effects cancel and the molecule as a whole is nonpolar.
Self-test A. 3 Is NH_{3} polar?
Answer: Yes

A. 3 Bulk matter

Bulk matter consists of large numbers of atoms, molecules, or ions. Its physical state may be solid, liquid, or gas:

A solid is a form of matter that adopts and maintains a shape that is independent of the container it occupies.
A liquid is a form of matter that adopts the shape of the part of the container it occupies (in a gravitational field, the lower part) and is separated from the unoccupied part of the container by a definite surface.
A gas is a form of matter that immediately fills any container it occupies.

A liquid and a solid are examples of a condensed state of matter. A liquid and a gas are examples of a fluid form of matter: they flow in response to forces (such as gravity) that are applied.

(a) Properties of bulk matter

The state of a bulk sample of matter is defined by specifying the values of various properties. Among them are:

The mass, m, a measure of the quantity of matter present (unit: 1 kilogram, 1 kg).
The volume, V, a measure of the quantity of space the sample occupies (unit: 1 cubic metre, $1 \mathrm{~m}^{3}$).
The amount of substance, n, a measure of the number of specified entities (atoms, molecules, or formula units) present (unit: 1 mole, 1 mol).

Brief illustration A. 4 Volume units

Volume is also expressed as submultiples of $1 \mathrm{~m}^{3}$, such as cubic decimetres ($1 \mathrm{dm}^{3}=10^{-3} \mathrm{~m}^{3}$) and cubic centimetres $\left(1 \mathrm{~cm}^{3}=10^{-6} \mathrm{~m}^{3}\right)$. It is also common to encounter the nonSI unit litre ($1 \mathrm{~L}=1 \mathrm{dm}^{3}$) and its submultiple the millilitre ($1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$). To carry out simple unit conversions, simply replace the fraction of the unit (such as 1 cm) by its definition (in this case, $10^{-2} \mathrm{~m}$). Thus, to convert $100 \mathrm{~cm}^{3}$ to cubic decimetres (litres), use $1 \mathrm{~cm}=10^{-1} \mathrm{dm}$, in which case $100 \mathrm{~cm}^{3}=100$ $\left(10^{-1} \mathrm{dm}\right)^{3}$, which is the same as $0.100 \mathrm{dm}^{3}$.

Self-test A. 4 Express a volume of $100 \mathrm{~mm}^{3}$ in units of cm^{3}.
Answer: $0.100 \mathrm{~cm}^{3}$

An extensive property of bulk matter is a property that depends on the amount of substance present in the sample; an intensive property is a property that is independent of the amount of substance. The volume is extensive; the mass density, ρ (rho), with

$$
\begin{equation*}
\rho=\frac{m}{V} \tag{A.2}
\end{equation*}
$$

Mass density
is intensive.
The amount of substance, n (colloquially, 'the number of moles'), is a measure of the number of specified entities present in the sample. 'Amount of substance' is the official name of the quantity; it is commonly simplified to 'chemical amount' or simply 'amount'. The unit 1 mol is currently defined as the number of carbon atoms in exactly 12 g of carbon-12. (In 2011 the decision was taken to replace this definition, but the change has not yet, in 2014, been implemented.) The number of entities per mole is called Avogadro's constant, N_{A}; the currently accepted value is $6.022 \times 10^{23} \mathrm{~mol}^{-1}$ (note that N_{A} is a constant with units, not a pure number).

The molar mass of a substance, M (units: formally kilograms per mole but commonly grams per mole, $\mathrm{g} \mathrm{mol}^{-1}$) is the mass per mole of its atoms, its molecules, or its formula units. The amount of substance of specified entities in a sample can readily be calculated from its mass, by noting that

$$
\begin{equation*}
n=\frac{m}{M} \tag{A.3}
\end{equation*}
$$

Amount of substance

A note on good practice Be careful to distinguish atomic or molecular mass (the mass of a single atom or molecule; units kg) from molar mass (the mass per mole of atoms or molecules; units $\mathrm{kg} \mathrm{mol}^{-1}$). Relative molecular masses of atoms and molecules, $M_{\mathrm{r}}=m / m_{\mathrm{u}}$, where m is the mass of the atom or molecule and m_{u} is the atomic mass constant (see inside front cover), are still widely called 'atomic weights' and 'molecular weights' even though they are dimensionless quantities and not weights (the gravitational force exerted on an object).

A sample of matter may be subjected to a pressure, p (unit: 1 pascal, $\mathrm{Pa} ; 1 \mathrm{~Pa}=1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$), which is defined as the force, F, it is subjected to divided by the area, A, to which that force is applied. A sample of gas exerts a pressure on the walls of its container because the molecules of gas are in ceaseless, random motion, and exert a force when they strike the walls. The frequency of the collisions is normally so great that the force, and therefore the pressure, is perceived as being steady.

Although 1 pascal is the SI unit of pressure (The chemist's toolkit A.1), it is also common to express pressure in bar ($1 \mathrm{bar}=10^{5} \mathrm{~Pa}$) or atmospheres ($1 \mathrm{~atm}=101325 \mathrm{~Pa}$ exactly), both of which correspond to typical atmospheric pressure. Because many physical properties depend on the pressure acting on a sample, it is appropriate to select a certain value of the pressure to report their values. The standard pressure for reporting physical quantities is currently defined as $p^{\ominus}=1$ bar exactly.

The chemist's toolkit A. 1
 Quantities and units

The result of a measurement is a physical quantity that is reported as a numerical multiple of a unit:

$$
\text { physical quantity }=\text { numerical value } \times \text { unit }
$$

It follows that units may be treated like algebraic quantities and may be multiplied, divided, and cancelled. Thus, the expression (physical quantity)/unit is the numerical value (a dimensionless quantity) of the measurement in the specified units. For instance, the mass m of an object could be reported as $m=2.5 \mathrm{~kg}$ or $m / \mathrm{kg}=2.5$. See Table A. 1 in the Resource section for a list of units. Although it is good practice to use only SI units, there will be occasions where accepted practice is so deeply rooted that physical quantities are expressed using other, non-SI units. By international convention, all physical quantities are represented by oblique (sloping) symbols; all units are roman (upright).
Units may be modified by a prefix that denotes a factor of a power of 10 . Among the most common SI prefixes are those listed in Table A. 2 in the Resource section. Examples of the use of these prefixes are:

$$
1 \mathrm{~nm}=10^{-9} \mathrm{~m} \quad 1 \mathrm{ps}=10^{-12} \mathrm{~s} \quad 1 \mu \mathrm{~mol}=10^{-6} \mathrm{~mol}
$$

Powers of units apply to the prefix as well as the unit they modify. For example, $1 \mathrm{~cm}^{3}=1(\mathrm{~cm})^{3}$, and $\left(10^{-2} \mathrm{~m}\right)^{3}=10^{-6} \mathrm{~m}^{3}$. Note that $1 \mathrm{~cm}^{3}$ does not mean $1 \mathrm{c}\left(\mathrm{m}^{3}\right)$. When carrying out numerical calculations, it is usually safest to write out the numerical value of an observable in scientific notation (as $n . n n n \times 10^{n}$).
There are seven SI base units, which are listed in Table A. 3 in the Resource section. All other physical quantities may be expressed as combinations of these base units (see Table A. 4 in the Resource section). Molar concentration (more formally, but very rarely, amount of substance concentration) for example, which is an amount of substance divided by the volume it occupies, can be expressed using the derived units of $\mathrm{mol} \mathrm{dm}^{-3}$ as a combination of the base units for amount of substance and length. A number of these derived combinations of units have special names and symbols and we highlight them as they arise.

To specify the state of a sample fully it is also necessary to give its temperature, T. The temperature is formally a property that determines in which direction energy will flow as heat when two samples are placed in contact through thermally conducting walls: energy flows from the sample with the higher temperature to the sample with the lower temperature. The symbol T is used to denote the thermodynamic temperature which is an absolute scale with $T=0$ as the lowest point. Temperatures above $T=0$ are then most commonly expressed by using the Kelvin scale, in which the gradations of temperature are expressed as multiples of the unit 1 kelvin (1 K). The Kelvin scale is currently defined by setting the triple point of
water (the temperature at which ice, liquid water, and water vapour are in mutual equilibrium) at exactly 273.16 K (as for certain other units, a decision has been taken to revise this definition, but it has not yet, in 2014, been implemented). The freezing point of water (the melting point of ice) at 1 atm is then found experimentally to lie 0.01 K below the triple point, so the freezing point of water is 273.15 K . The Kelvin scale is unsuitable for everyday measurements of temperature, and it is common to use the Celsius scale, which is defined in terms of the Kelvin scale as

$$
\theta /{ }^{\circ} \mathrm{C}=T / \mathrm{K}-273.15 \quad \text { Definition } \quad \text { Celsius scale } \quad \text { (A.4) }
$$

Thus, the freezing point of water is $0^{\circ} \mathrm{C}$ and its boiling point (at 1 atm) is found to be $100^{\circ} \mathrm{C}$ (more precisely $99.974^{\circ} \mathrm{C}$). Note that in this text T invariably denotes the thermodynamic (absolute) temperature and that temperatures on the Celsius scale are denoted θ (theta).

A note on good practice Note that we write $T=0$, not $T=0 \mathrm{~K}$. General statements in science should be expressed without reference to a specific set of units. Moreover, because T (unlike θ) is absolute, the lowest point is 0 regardless of the scale used to express higher temperatures (such as the Kelvin scale). Similarly, we write $m=0$, not $m=0 \mathrm{~kg}$ and $l=0$, not $l=0 \mathrm{~m}$.

(b) The perfect gas equation

The properties that define the state of a system are not in general independent of one another. The most important example of a relation between them is provided by the idealized fluid known as a perfect gas (also, commonly, an 'ideal gas'):

$$
\begin{equation*}
p V=n R T \quad \text { Perfect gas equation } \tag{A.5}
\end{equation*}
$$

Here R is the gas constant, a universal constant (in the sense of being independent of the chemical identity of the gas) with the value $8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. Throughout this text, equations applicable only to perfect gases (and other idealized systems) are labelled, as here, with a number in blue.

A note on good practice Although the term 'ideal gas' is almost universally used in place of 'perfect gas', there are reasons for preferring the latter term. In an ideal system the interactions between molecules in a mixture are all the same. In a perfect gas not only are the interactions all the same but they are in fact zero. Few, though, make this useful distinction.

Equation A.5, the perfect gas equation, is a summary of three empirical conclusions, namely Boyle's law ($p \propto 1 / V$ at constant temperature and amount), Charles's law ($p \propto T$ at constant volume and amount), and Avogadro's principle ($V \propto n$ at constant temperature and pressure).

Example A. 1 Using the perfect gas equation

Calculate the pressure in kilopascals exerted by 1.25 g of nitrogen gas in a flask of volume $250 \mathrm{~cm}^{3}$ at $20^{\circ} \mathrm{C}$.

Method To use eqn A.5, we need to know the amount of molecules (in moles) in the sample, which we can obtain from the mass and the molar mass (by using eqn A.3) and to convert the temperature to the Kelvin scale (by using eqn A.4).

Answer The amount of N_{2} molecules (of molar mass 28.02 $\mathrm{g} \mathrm{mol}^{-1}$) present is

$$
n\left(\mathrm{~N}_{2}\right)=\frac{m}{M\left(\mathrm{~N}_{2}\right)}=\frac{1.25 \mathrm{~g}}{28.02 \mathrm{~g} \mathrm{~mol}^{-1}}=\frac{1.25}{28.02} \mathrm{~mol}
$$

The temperature of the sample is

$$
T / \mathrm{K}=20+273.15 \text {, so } T=(20+273.15) \mathrm{K}
$$

Therefore, after rewriting eqn A. 5 as $p=n R T / V$,

$$
\begin{aligned}
p & =\frac{\overbrace{(1.25 / 28.02) \mathrm{mol}}^{n} \times \overbrace{\left(8.3145 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)}^{R} \times \overbrace{(20+273.15) \mathrm{K}}^{\left(2.50 \times 10^{-4}\right) \mathrm{m}^{3}}}{T} \\
& =\frac{(1.25 / 28.02) \times(8.3145) \times(20+273.15)}{2.50 \times 10^{-4}} \frac{\mathrm{~J}}{\mathrm{~m}^{3}} \\
& =\stackrel{\mathrm{Jm}^{-3}=1 \mathrm{~Pa}}{=} 4.35 \times 10^{5} \mathrm{~Pa}=435 \mathrm{kPa}
\end{aligned}
$$

A note on good practice It is best to postpone a numerical calculation to the last possible stage, and carry it out in a single step. This procedure avoids rounding errors. When
we judge it appropriate to show an intermediate result without committing ourselves to a number of significant figures, we write it as n.nnп....

Self-test A. 5 Calculate the pressure exerted by 1.22 g of carbon dioxide confined in a flask of volume $500 \mathrm{dm}^{3}\left(5.00 \times 10^{2} \mathrm{dm}^{3}\right)$ at $37^{\circ} \mathrm{C}$.

Answer: 143 Pa

All gases obey the perfect gas equation ever more closely as the pressure is reduced towards zero. That is, eqn A. 5 is an example of a limiting law, a law that becomes increasingly valid in a particular limit, in this case as the pressure is reduced to zero. In practice, normal atmospheric pressure at sea level (about 1 atm) is already low enough for most gases to behave almost perfectly, and unless stated otherwise, we assume in this text that the gases we encounter behave perfectly and obey eqn A.5.

A mixture of perfect gases behaves like a single perfect gas. According to Dalton's law, the total pressure of such a mixture is the sum of the pressures to which each gas would give rise if it occupied the container alone:

$$
p=p_{\mathrm{A}}+p_{\mathrm{B}}+\cdots
$$

Dalton's law (A.6)
Each pressure, p_{J}, can be calculated from the perfect gas equation in the form $p_{\mathrm{J}}=n_{\mathrm{J}} R T / V$.

Checklist of concepts

1. In the nuclear model of an atom negatively charged electrons occupy atomic orbitals which are arranged in shells around a positively charged nucleus.
\square 2. The periodic table highlights similarities in electronic configurations of atoms, which in turn lead to similarities in their physical and chemical properties.3. Covalent compounds consist of discrete molecules in which atoms are linked by covalent bonds.4. Ionic compounds consist of cations and anions in a crystalline array.5. Lewis structures are useful models of the pattern of bonding in molecules.6. The valence-shell electron pair repulsion theory (VSEPR theory) is used to predict the three-
dimensional shapes of molecules from their Lewis structures.
2. The electrons in polar covalent bonds are shared unequally between the bonded nuclei.
3. The physical states of bulk matter are solid, liquid, or gas.
4. The state of a sample of bulk matter is defined by specifying its properties, such as mass, volume, amount, pressure, and temperature.
\square 10. The perfect gas equation is a relation between the pressure, volume, amount, and temperature of an idealized gas.11. A limiting law is a law that becomes increasingly valid in a particular limit.

Checklist of equations

Property	Equation	Comment	Equation number
Electric dipole moment	$\mu=Q d$	μ is the magnitude of the moment	A. 1
Mass density	$\rho=m / V$	Intensive property	A.2
Amount of substance	$n=m / M$	Extensive property	A.3
Celsius scale	$\theta /{ }^{\circ} \mathrm{C}=T / \mathrm{K}-273.15$	Temperature is an intensive property; 273.15 is exact.	A. 4
Perfect gas equation	$p V=n R T$		A. 5
Dalton's law	$p=p_{\mathrm{A}}+p_{\mathrm{B}}+\cdots$	A. 6	

B Energy

Contents
B. 1 Force 9
(a) Momentum 9
Brief illustration B.1: The moment of inertia 10
(b) Newton's second law of motion 10
Brief illustration B.2: Newton's second law of motion 10
B. 2 Energy: a first look 11
(a) Work 11
Brief illustration B.3: The work of stretching a bond 11
(b) The definition of energy 11
Brief illustration B.4: The trajectory of a particle 12
c) The Coulomb potential energy 12
Brief illustration B.5: The Coulomb potential energy 13
(d) Thermodynamics 14
Brief illustration B.6: The relation between U and H 14
B. 3 The relation between molecular and bulk properties 15
(a) The Boltzmann distribution 15
Brief illustration B.7: Relative populations 16
(b) Equipartition 17
Brief illustration B.8: Average molecular energies 17
Checklist of concepts 17
Checklist of equations 18

Why do you need to know this material?

Energy is the central unifying concept of physical chemistry, and you need to gain insight into how electrons, atoms, and molecules gain, store, and lose energy.

What is the key idea?

Energy, the capacity to do work, is restricted to discrete values in electrons, atoms, and molecules.

What do you need to know already?
You need to review the laws of motion and principles of electrostatics normally covered in introductory physics and concepts of thermodynamics normally covered in introductory chemistry.

Much of chemistry is concerned with transfers and transformations of energy, and from the outset it is appropriate to define this familiar quantity precisely. We begin here by reviewing classical mechanics, which was formulated by Isaac Newton in the seventeenth century, and establishes the vocabulary used to describe the motion and energy of particles. These classical ideas prepare us for quantum mechanics, the more fundamental theory formulated in the twentieth century for the study of small particles, such as electrons, atoms, and molecules. We develop the concepts of quantum mechanics throughout the text. Here we begin to see why it is needed as a foundation for understanding atomic and molecular structure.

B. 1 Force

Molecules are built from atoms and atoms are built from subatomic particles. To understand their structures we need to know how these bodies move under the influence of the forces they experience.

(a) Momentum

'Translation' is the motion of a particle through space. The velocity, v, of a particle is the rate of change of its position r :

$$
\begin{equation*}
v=\frac{\mathrm{d} r}{\mathrm{~d} t} \quad \text { Definition Velocity } \tag{B.1}
\end{equation*}
$$

For motion confined to a single dimension, we would write $v_{x}=\mathrm{d} x / \mathrm{d} t$. The velocity and position are vectors, with both direction and magnitude (vectors and their manipulation are treated in detail in Mathematical background 5). The magnitude of the velocity is the speed, v. The linear momentum, p, of a particle of mass m is related to its velocity, v, by

$$
\begin{equation*}
p=m v \quad \text { Definition } \quad \text { Linear momentum } \tag{B.2}
\end{equation*}
$$

Like the velocity vector, the linear momentum vector points in the direction of travel of the particle (Fig. B.1); its magnitude is denoted p.
The description of rotation is very similar to that of translation. The rotational motion of a particle about a central point is described by its angular momentum, J. The angular

