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FUNDAMENTAL CONSTANTS

Constant Symbol Value

Power of 10 Units

Speed of light c 2.997 924 58* 108 m s−1

Elementary charge e 1.602 176 565 10−19 C

Planck’s constant h 6.626 069 57 10−34 J s

ħ = h/2π 1.054 571 726 10−34 J s

Boltzmann’s constant k 1.380 6488 10−23 J K−1

Avogadro’s constant NA 6.022 141 29 1023 mol−1

Gas constant R = NAk 8.314 4621 J K−1 mol−1

Faraday’s constant F = NAe 9.648 533 65 104 C mol−1

Mass

 Electron me 9.109 382 91 10−31 kg

 Proton mp 1.672 621 777 10−27 kg

 Neutron mn 1.674 927 351 10−27 kg

 Atomic mass constant mu 1.660 538 921 10−27 kg

Vacuum permeability μ0 4π* 10−7 J s2 C−2 m−1

Vacuum permittivity ε0 = 1/μ0c2 8.854 187 817 10−12 J−1 C2 m−1

4πε0 1.112 650 056 10−10 J−1 C2 m−1

Bohr magneton μB = eħ/2me 9.274 009 68 10−24 J T−1

Nuclear magneton μN = eħ/2mp 5.050 783 53 10−27 J T−1

Proton magnetic moment μp 1.410 606 743 10−26 J T−1

g-Value of electron ge 2.002 319 304

Magnetogyric ratio

 Electron γe = –gee/2me –1.001 159 652 1010 C kg−1

 Proton γp = 2μp/ħ 2.675 222 004 108 C kg−1

Bohr radius a0 = 4πε0ħ2/e2me 5.291 772 109 10−11 m

Rydberg constant �R m e h c∞ = e
4 3

0
28/ ε 1.097 373 157 105 cm−1

hcR e�
∞ / 13.605 692 53 eV

Fine-structure constant α = μ0e2c/2h 7.297 352 5698 10−3

α−1 1.370 359 990 74 102

Second radiation constant c2 = hc/k 1.438 777 0 10−2 m K

Stefan–Boltzmann constant σ = 2π5k4/15h3c2 5.670 373 10−8 W m−2 K−4

Standard acceleration of free fall g 9.806 65* m s−2

Gravitational constant G 6.673 84 10−11 N m2 kg−2

* Exact value. For current values of the constants, see the National Institute of Standards and Technology (NIST) website.
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PREFACE

Tis new edition is the product of a thorough revision of 
content and its presentation. Our goal is to make the book 
even more accessible to students and useful to instructors by 
enhancing its fexibility. We hope that both categories of user 
will perceive and enjoy the renewed vitality of the text and the 
presentation of this demanding but engaging subject.

Te text is still divided into three parts, but each chapter is 
now presented as a series of short and more readily mastered 
Topics. Tis new structure allows the instructor to tailor the text 
within the time constraints of the course as omissions will be 
easier to make, emphases satisfed more readily, and the trajec-
tory through the subject modifed more easily. For instance, 
it is now easier to approach the material either from a ‘quan-
tum frst’ or a ‘thermodynamics frst’ perspective because it 
is no longer necessary to take a linear path through chapters. 
Instead, students and instructors can match the choice of 
Topics to their learning objectives. We have been very care-
ful not to presuppose or impose a particular sequence, except 
where it is demanded by common sense.

We open with a Foundations chapter, which reviews basic 
concepts of chemistry and physics used through the text. Part 
1 now carries the title Termodynamics. New to this edition is 
coverage of ternary phase diagrams, which are important in 
applications of physical chemistry to engineering and mater-
ials science. Part 2 (Structure) continues to cover quantum the-
ory, atomic and molecular structure, spectroscopy, molecular 
assemblies, and statistical thermodynamics. Part 3 (Change) 
has lost a chapter dedicated to catalysis, but not the material. 
Enzyme-catalysed reactions are now in Chapter 20, and hetero-
geneous catalysis is now part of a new Chapter 22 focused on 
surface structure and processes.

As always, we have paid special attention to helping students 
navigate and master this material. Each chapter opens with a 
brief summary of its Topics. Ten each Topic begins with three 
questions: ‘Why do you need to know this material?’, ‘What is 
the key idea?’, and ‘What do you need to know already?’. Te 
answers to the third question point to other Topics that we con-
sider appropriate to have studied or at least to refer to as back-
ground to the current Topic. Te Checklists at the end of each 

Topic are useful distillations of the most important concepts 
and equations that appear in the exposition.

We continue to develop strategies to make mathematics, 
which is so central to the development of physical chemistry, 
accessible to students. In addition to associating Mathematical 
background sections with appropriate chapters, we give more 
help with the development of equations: we motivate them, 
justify them, and comment on the steps taken to derive them. 
We also added a new feature: Te chemist’s toolkit, which ofers 
quick and immediate help on a concept from mathematics or 
physics.

Tis edition has more worked Examples, which require 
students to organize their thoughts about how to proceed 
with complex calculations, and more Brief illustrations, 
which show how to use an equation or deploy a concept in 
a straightforward way. Both have Self-tests to enable students 
to assess their grasp of the material. We have structured the 
end-of-chapter Discussion questions, Exercises, and Problems 
to match the grouping of the Topics, but have added Topic- 
and Chapter-crossing Integrated activities to show that sev-
eral Topics are ofen necessary to solve a single problem. Te 
Resource section has been restructured and augmented by the 
addition of a list of integrals that are used (and referred to) 
throughout the text.

We are, of course, alert to the development of electronic 
resources and have made a special efort in this edition to 
encourage the use of web-based tools, which are identifed in 
the Using the book section that follows this preface. Important 
among these tools are Impact sections, which provide examples 
of how the material in the chapters is applied in such diverse 
areas as biochemistry, medicine, environmental science, and 
materials science.

Overall, we have taken this opportunity to refresh the text 
thoroughly, making it even more fexible, helpful, and up to 
date. As ever, we hope that you will contact us with your sug-
gestions for its continued improvement.

PWA, Oxford
JdeP, Portland



USING THE BOOK

Organizing the information

➤  Innovative new structure
Each chapter has been reorganized into short topics, 
making the text more readable for students and more 
fexible for instructors. Each topic opens with a comment 
on why it is important, a statement of the key idea, and a 
brief summary of the background needed to understand 
the topic.

➤  Notes on good practice
Our Notes on good practice will help you avoid making 
common mistakes. Tey encourage conformity to the 
international language of science by setting out the 
conventions and procedures adopted by the International 
Union of Pure and Applied Chemistry (IUPAC).

➤  Resource section
Te comprehensive Resource section at the end of the book 
contains a table of integrals, data tables, a summary of con-
ventions about units, and character tables. Short extracts 
of these tables ofen appear in the topics themselves, prin-
cipally to give an idea of the typical values of the physical 
quantities we are introducing. 

For the tenth edition of Physical Chemistry: Termodynamics, 
Structure, and Change we have tailored the text even more 
closely to the needs of students. First, the material within each 
chapter has been reorganized into discrete topics to improve 
accessibility, clarity, and fexibility. Second, in addition to 

the variety of learning features already present, we have sig-
nifcantly enhanced the mathematics support by adding new 
Chemist’s toolkit boxes, and checklists of key concepts at the 
end of each topic.

Te presentation of physical chemistry in this text is based on 
the experimentally verifed fact that matter consists of atoms. 

A.1 Atoms

Z

nucleon number
number), A

ber are the isotopes

(a) 

According to the 

each of charge –e (

are arranged in 
acterized by the 
consists of n2

into n subshells

(b) 

table are called 

Contents

A.1 Atoms 2
(a) The nuclear model 2
(b) The periodic table 2
(c) Ions 3

A.2 Molecules 3
(a) Lewis structures 3

Brief illustration A.1: Octet expansion 4
(b) VSEPR theory 4

Brief illustration A.2: Molecular shapes 4
(c) Polar bonds 4

Brief illustration A.3: Nonpolar molecules with  
polar bonds 4

A.3 Bulk matter 5
(a) Properties of bulk matter 5

Brief illustration A.4: Volume units 5
(b) The perfect gas equation 6

Example A.1: Using the perfect gas equation 7
Checklist of concepts 7
Checklist of equations 8

➤➤ Why do you need to know this material?
Because chemistry is about matter and the changes 
that it can undergo, both physically and chemically, the 
properties of matter underlie the entire discussion in this 
book.

➤➤ What is the key idea?
The bulk properties of matter are related to the identities 
and arrangements of atoms and molecules in a sample.

➤➤ What do you need to know already?
This Topic reviews material commonly covered in 
introductory chemistry.
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To specify the state of a sample fully it is also necessary to 
give its temperature, T. Te temperature is formally a prop-
erty that determines in which direction energy will fow as 
heat when two samples are placed in contact through ther-
mally conducting walls: energy fows from the sample with the 
higher temperature to the sample with the lower temperature. 
Te symbol T is used to denote the thermodynamic tempera-
ture which is an absolute scale with T = 0 as the lowest point. 
Temperatures above T = 0 are then most commonly expressed 
by using the Kelvin scale, in which the gradations of tempera-
ture are expressed as multiples of the unit 1 kelvin (1 K). Te 
Kelvin scale is currently defned by setting the triple point of 

 
certain other units, a decision has been taken to revise this 
defnition, but it has not yet, in 2014, been implemented). Te 
freezing point of water (the melting point of ice) at 1 atm is 
then found experimentally to lie 0.01 K below the triple point, 
so the freezing point of water is 273.15 K. Te Kelvin scale is 
unsuitable for everyday measurements of temperature, and it is 
common to use the Celsius scale, which is defned in terms of 
the Kelvin scale as

θ / / .° = −C K 273 15T  Defnition  Celsius scale  (A.4)

Tus, the freezing point of water is 0 °C and its boiling point (at 
1 atm) is found to be 100 °C (more precisely 99.974 °C). Note 
that in this text T invariably denotes the thermodynamic (abso-
lute) temperature and that temperatures on the Celsius scale 
are denoted θ (theta).

A note on good practice Note that we write T = 0, not T = 0 K. 
General statements in science should be expressed without 
reference to a specifc set of units. Moreover, because T (unlike 
θ) is absolute, the lowest point is 0 regardless of the scale used 
to express higher temperatures (such as the Kelvin scale). 
Similarly, we write m = 0, not m = 0 kg and l = 0, not l = 0 m.

(b) The perfect gas equation
Te properties that defne the state of a system are not in gen-
eral independent of one another. Te most important example 
of a relation between them is provided by the idealized fuid 
known as a perfect gas (also, commonly, an ‘ideal gas’):

pV nRT=   Perfect gas equation  (A.5)

Here R is the gas constant, a universal constant (in the sense 
of being independent of the chemical identity of the gas) with 
the value 8.3145 J K−1 mol−1. Troughout this text, equations 
applicable only to perfect gases (and other idealized systems) 
are labelled, as here, with a number in blue.

A note on good practice Although the term ‘ideal gas’ is 
almost universally used in place of ‘perfect gas’, there are 
reasons for preferring the latter term. In an ideal system 
the interactions between molecules in a mixture are all the 
same. In a perfect gas not only are the interactions all the 
same but they are in fact zero. Few, though, make this useful 
distinction.

Equation A.5, the perfect gas equation, is a summary of 
three empirical conclusions, namely Boyle’s law (p ∝ 1/V at 
constant temperature and amount), Charles’s law (p ∝ T at con-
stant volume and amount), and Avogadro’s principle (V ∝ n at 
constant temperature and pressure).

The result of a measurement is a physical quantity that is 
reported as a numerical multiple of a unit:

physicalquantity numerical value unit= ×

It follows that units may be treated like algebraic quanti-
ties and may be multiplied, divided, and cancelled. Tus, the 
expression (physical quantity)/unit is the numerical value (a 
dimensionless quantity) of the measurement in the specifed 
units. For instance, the mass m of an object could be reported 
as m = 2.5 kg or m/kg = 2.5. See Table A.1 in the Resource sec-
tion for a list of units. Although it is good practice to use only 
SI units, there will be occasions where accepted practice is 
so deeply rooted that physical quantities are expressed using 
other, non-SI units. By international convention, all physical 
quantities are represented by oblique (sloping) symbols; all 
units are roman (upright).

Units may be modifed by a prefx that denotes a factor of a 
power of 10. Among the most common SI prefxes are those 
listed in Table A.2 in the Resource section. Examples of the use 
of these prefxes are:

Powers of units apply to the prefx as well as the unit they mod-
ify. For example, 1 cm3 = 1 (cm)3, and (10−2 m)3 = 10−6 m3. Note 
that 1 cm3 does not mean 1 c(m3) . When carrying out numeri-
cal calculations, it is usually safest to write out the numerical 
value of an observable in scientifc notation (as n.nnn × 10n).

Tere are seven SI base units, which are listed in Table A.3 
in the Resource section. All other physical quantities may be 
expressed as combinations of these base units (see Table A.4 
in the Resource section). Molar concentration (more formally, 
but very rarely, amount of substance concentration) for exam-
ple, which is an amount of substance divided by the volume it 
occupies, can be expressed using the derived units of mol dm−3 
as a combination of the base units for amount of substance 
and length. A number of these derived combinations of units 
have special names and symbols and we highlight them as 
they arise.

1 nm = 10−9 m 1 ps = 10−12 s 1 µmol = 10−6 mol
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Using the book  vii

➤  Checklist of concepts

A Checklist of key concepts is provided at the end of each 
topic so that you can tick of those concepts which you feel 
you have mastered.

Presenting the mathematics

➤  Justifcations
Mathematical development is an intrinsic part of physical 
chemistry, and to achieve full understanding you need 
to see how a particular expression is obtained and if any 
assumptions have been made. Te Justifcations are set of 
from the text to let you adjust the level of detail to meet 
your current needs and make it easier to review material.

➤  Chemist’s toolkits
New to the tenth edition, the Chemist’s toolkits are succinct 
reminders of the mathematical concepts and techniques 
that you will need in order to understand a particular 
derivation being described in the main text.

➤  Mathematical backgrounds
Tere are six Mathematical background sections dispersed 
throughout the text. Tey cover in detail the main 
mathematical concepts that you need to understand in 
order to be able to master physical chemistry. Each one is 
located at the end of the chapter to which it is most relevant. 

stant volume by using the relation Cp,m − CV,m = R.)

Answer From eqn 3A.16 the entropy change in the isothermal 
expansion from Vi to Vf is

Self-test 3A.11 

Checklist of concepts

☐ 1. Te entropy acts as a signpost of spontaneous change.
☐ 2. Entropy change is defned in terms of heat transactions 

(the Clausius defnition).
☐ 3. The Boltzmann formula defines absolute entro-

pies in terms of the number of ways of achieving a 
confguration.

☐ 4. Te Carnot cycle is used to prove that entropy is a state 
function.

☐ 5. Te efciency of a heat engine is the basis of the defni-
tion of the thermodynamic temperature scale and one 
realization, the Kelvin scale.

☐ 6. The 

☐ 7. 

☐ 8. 

☐ 9. 
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118 3 The Second and Third Laws

2. Ten to show that the result is true whatever the working 
substance.

3. Finally, to show that the result is true for any cycle.

(a) The Carnot cycle
A Carnot cycle, which is named afer the French engineer Sadi 
Carnot, consists of four reversible stages (Fig. 3A.7):

1. Reversible isothermal expansion from A to B at Th; the 
entropy change is qh/Th, where qh is the energy supplied 
to the system as heat from the hot source.

2. Reversible adiabatic expansion from B to C. No energy 
leaves the system as heat, so the change in entropy is 
zero. In the course of this expansion, the temperature 
falls from Th to Tc, the temperature of the cold sink.

3. Reversible isothermal compression from C to D at Tc. 
Energy is released as heat to the cold sink; the change in 
entropy of the system is qc/Tc; in this expression qc is 
negative.

4. Reversible adiabatic compression from D to A. No energy 
enters the system as heat, so the change in entropy is 
zero. Te temperature rises from Tc to Th.

Te total change in entropy around the cycle is the sum of the 
changes in each of these four steps:

d h

h

c

c
S q

T
q
T= +∫�

However, we show in the following Justifcation that for a 
 perfect gas

q
q

T
T

h

c

h

c
= −

 
(3A.7)

Substitution of this relation into the preceding equation gives 
zero on the right, which is what we wanted to prove.

Justifcation 3A.1 Heating accompanying reversible 
adiabatic expansion

Tis Justifcation is based on two features of the cycle. One fea-
ture is that the two temperatures Th and Tc in eqn 3A.7 lie on 
the same adiabat in Fig. 3A.7. Te second feature is that the 
energy transferred as heat during the two isothermal stages 
are

q nRT V
V q nRT V

Vh h
B

A
c c

D

C
= =ln ln

 

We now show that the two volume ratios are related in a very 
simple way. From the relation between temperature and volume 
for reversible adiabatic processes (VTc = constant, Topic 2D):

V T V T V T V Tc c c
A h D c C c B h

c= =  
Multiplication of the frst of these expressions by the second 
gives

V V T T V V T Tc c c c
A C h c D B h c=  

which, on cancellation of the temperatures, simplifes to

V
V

V
V

D

C

A

B
=

 

With this relation established, we can write

q nRT V
V nRT V

V nRT V
Vc c

D

C
c

A

B
c

B

A
= = = −ln ln ln

 

and therefore

q
q

nRT V V
nRT V V

T
Tc

h

c

h B A

B A

h

c
= − = −ln( / )

ln( / )  

as in eqn 3A.7. For clarifcation, note that qh is negative (heat 
is withdrawn from the hot source) and qc is positive (heat is 
deposited in the cold sink), so their ratio is negative.

Brief illustration 3A.3 The Carnot cycle

Te Carnot cycle can be regarded as a representation of the 
changes taking place in an actual idealized engine, where 
heat is converted into work. (However, other cycles are closer 
approximations to real engines.) In an engine running in 
accord with the Carnot cycle, 100 J of energy is withdrawn 

Pr
es

su
re

, p

Volume, V

Adiabat

AdiabatIsotherm

Isotherm

1

2
3

4

A

B

C

D

Figure 3A.7 The basic structure of a Carnot cycle. In Step 1, 
there is isothermal reversible expansion at the temperature 
Th. Step 2 is a reversible adiabatic expansion in which the 
temperature falls from Th to Tc. In Step 3 there is an isothermal 
reversible compression at Tc, and that isothermal step is 
followed by an adiabatic reversible compression, which 
restores the system to its initial state.

6 Foundations

θ / /° =C T

that in this text 

are denoted θ

θ

(b) 

known as a 

pV nRT=  

Here R is the 

The chemist’s toolkit A.1  Quantities and units

The result of a measurement is a physical quantity that is 
reported as a numerical multiple of a unit:

physicalquantity numerical value unit= ×

It follows that units may be treated like algebraic quanti-
ties and may be multiplied, divided, and cancelled. Tus, the 
expression (physical quantity)/unit is the numerical value (a 
dimensionless quantity) of the measurement in the specifed 
units. For instance, the mass m of an object could be reported 
as m = 2.5 kg or m/kg = 2.5. See Table A.1 in the Resource sec-
tion for a list of units. Although it is good practice to use only 
SI units, there will be occasions where accepted practice is 
so deeply rooted that physical quantities are expressed using 
other, non-SI units. By international convention, all physical 
quantities are represented by oblique (sloping) symbols; all 
units are roman (upright).

Units may be modifed by a prefx that denotes a factor of a 
power of 10. Among the most common SI prefxes are those 
listed in Table A.2 in the Resource section. Examples of the use 
of these prefxes are:

Powers of units apply to the prefx as well as the unit they mod-
ify. For example, 1 cm3 = 1 (cm)3, and (10−2 m)3 = 10−6 m3. Note 
that 1 cm3 does not mean 1 c(m3) . When carrying out numeri-
cal calculations, it is usually safest to write out the numerical 
value of an observable in scientifc notation (as n.nnn × 10n).

Tere are seven SI base units, which are listed in Table A.3 
in the Resource section. All other physical quantities may be 
expressed as combinations of these base units (see Table A.4 
in the Resource section). Molar concentration (more formally, 
but very rarely, amount of substance concentration) for exam-
ple, which is an amount of substance divided by the volume it 
occupies, can be expressed using the derived units of mol dm−3 
as a combination of the base units for amount of substance 

1 nm = 10−9 m 1 ps = 10−12 s 1 µmol = 10−6 mol

Mathematical background 1 Diferentiation and integration

Two of the most important mathematical techniques in the 
physical sciences are diferentiation and integration. Tey 
occur throughout the subject, and it is essential to be aware of 
the procedures involved.

MB1.1 Diferentiation: defnitions
Diferentiation is concerned with the slopes of functions, such 
as the rate of change of a variable with time. Te formal defni-
tion of the derivative, df/dx, of a function f(x) is

d
d

f
x

f x x f x
xx

= + −
→

lim
( ) ( )

δ

δ
δ0  

Defnition  First derivative  (MB1.1)

As shown in Fig. MB1.1, the derivative can be interpreted as the 
slope of the tangent to the graph of f(x). A positive frst deriva-
tive indicates that the function slopes upwards (as x increases), 
and a negative frst derivative indicates the opposite. It is some-
times convenient to denote the frst derivative as f ′(x). Te sec-
ond derivative, d2f/dx2, of a function is the derivative of the 

d
dx

x nxn n= −1

 

d
d

e e
x

aax ax=
 

d
dx

axsin c

d
x

ax
xd

ln = 1

 

from d to ∂



viii Using the book

➤  Annotated equations and  
 equation labels 

We have annotated many equations to help you follow how 
they are developed. An annotation can take you across the 
equals sign: it is a reminder of the substitution used, an 
approximation made, the terms that have been assumed 
constant, the integral used, and so on. An annotation can 
also be a reminder of the signifcance of an individual 
term in an expression. We sometimes color a collection of 
numbers or symbols to show how they carry from one line 
to the next. Many of the equations are labelled to highlight 
their signifcance. 

➤  Checklists of equations 
You don’t have to memorize every equation in the text. 
A checklist at the end of each topic summarizes the most 
important equations and the conditions under which  
they apply.

Setting up and solving problems

➤  Brief illustrations
A Brief illustration shows you how to use equations or 
concepts that have just been introduced in the text. Tey 
help you to learn how to use data, manipulate units 
correctly, and become familiar with the magnitudes of 
properties. Tey are all accompanied by a Self-test question 
which you can use to monitor your progress. 

Tis equation has the same form as the original, but the coef-
cients a and b, which difer from gas to gas, have disappeared. It 
follows that if the isotherms are plotted in terms of the reduced 
variables (as we did in fact in Fig. 1C.8 without drawing atten-
tion to the fact), then the same curves are obtained whatever 
the gas. Tis is precisely the content of the principle of corre-
sponding states, so the van der Waals equation is compatible 
with it.

Looking for too much signifcance in this apparent triumph 
is mistaken, because other equations of state also accommodate 

Checklist of concepts

☐ 1. Te extent of deviations from perfect behaviour is sum-
marized by introducing the compression factor.

☐ 2. Te virial equation is an empirical extension of the per-
fect gas equation that summarizes the behaviour of real 
gases over a range of conditions.

☐ 3. The isotherms of a real gas introduce the concept of 
vapour pressure and critical behaviour.

☐ 4. A gas can be liquefed by pressure alone only if its tem-
perature is at or below its critical temperature.

☐ 5. Te 

one (a
other (b

☐ 6. 

☐ 7. 

Checklist of equations

Property Equation Comment

Compression factor Z V V= m m/ � Defnition

Virial equation of state pV RT B V C Vm m= + + +( / / )1 3
m � B, C

van der Waals equation of state p = nRT/(V – nb) – a(n/V)2 a
b

Reduced variables Xr = Xm/Xc X = p, V, or 

07_Atkins_Ch01C.indd   53

52 1 The properties of gases

for all gases that are described by the van der Waals equation 
near the critical point. We see from Table 1C.2 that although 
Zc < =3

8 0 375. ,  it is approximately constant (at 0.3) and the dis-
crepancy is reasonably small.

(c) The principle of corresponding states

An important general technique in science for comparing the 
properties of objects is to choose a related fundamental prop-
erty of the same kind and to set up a relative scale on that basis. 
We have seen that the critical constants are characteristic prop-
erties of gases, so it may be that a scale can be set up by using 
them as yardsticks. We therefore introduce the dimensionless 
reduced variables of a gas by dividing the actual variable by the 
corresponding critical constant:

V V
V p p

p T T
Tr

m

c
r

c
r

c
= = =

 
Defnition  Reduced variables  (1C.8)

If the reduced pressure of a gas is given, we can easily calcu-
late its actual pressure by using p = prpc, and likewise for the 
volume and temperature. van der Waals, who frst tried this 
procedure, hoped that gases confned to the same reduced vol-
ume, Vr, at the same reduced temperature, Tr, would exert the 
same reduced pressure, pr. Te hope was largely fulflled (Fig. 
1C.9). Te illustration shows the dependence of the compres-
sion factor on the reduced pressure for a variety of gases at 
various reduced temperatures. Te success of the procedure 
is strikingly clear: compare this graph with Fig. 1C.3, where 

Te van der Waals equation sheds some light on the princi-
ple. First, we express eqn 1C.5b in terms of the reduced vari-
ables, which gives

p p RTT
VV b

a
V Vr c

r c

r c
= − −

r c
2 2

 

Ten we express the critical constants in terms of a and b by 
using eqn 1C.8:

Brief illustration 1C.4 Criteria for perfect gas behaviour

For benzene a = 18.57 atm dm6 mol−2 (1.882 Pa m6 mol−2) and 
b = 0.1193 dm3 mol−1 (1.193 × 10−4 m3 mol−1); its normal boil-
ing point is 353 K. Treated as a perfect gas at T = 400 K and 
p = 1.0 atm, benzene vapour has a molar volume of Vm = RT/p =  
33 dm mol−1, so the criterion Vm ≫ b for perfect gas behaviour 
is satisfed. It follows that a /Vm

2 0 017≈ . atm , which is 1.7 per 
cent of 1.0 atm. Terefore, we can expect benzene vapour to 
deviate only slightly from perfect gas behaviour at this tem-
perature and pressure.

Self-test 1C.5 Can argon gas be treated as a perfect gas at 400 K 
and 3.0 atm?

Answer: Yes
Brief illustration 1C.5 Corresponding states

Te critical constants of argon and carbon dioxide are given in 
Table 1C.2. Suppose argon is at 23 atm and 200 K, its reduced 
pressure and temperature are then

p Tr r
atm
atm

K
K= = = =

23
48 0 0 48

200
150 7 1 33. . . .

For carbon dioxide to be in a corresponding state, its pressure 
and temperature would need to be

p T= × = = × =0 48 72 9 35 1 33 304 2 405. ( . ) . .atm atm K K

Self-test 1C.6 What would be the corresponding state of 
ammonia?

Answer: 53 atm, 539 K
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Figure 1C.9 The compression factors of four of the gases 
shown in Fig. 1C.3 plotted using reduced variables. The curves 
are labelled with the reduced temperature Tr = T/Tc. The use of 
reduced variables organizes the data on to single curves.
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➤  Worked examples

Worked Examples are more detailed illustrations of the 
application of the material, which require you to assemble 
and develop concepts and equations. We provide a sug-
gested method for solving the problem and then implement 
it to reach the answer. Worked examples are also accompa-
nied by Self-test questions.

➤  Discussion questions
Discussion questions appear at the end of every chapter, 
where they are organized by topic. Tese questions are 
designed to encourage you to refect on the material you 
have just read, and to view it conceptually.

➤  Exercises and Problems
Exercises and Problems are also provided at the end of every 
chapter, and organized by topic. Tey prompt you to test 
your understanding of the topics in that chapter. Exercises 
are designed as relatively straightforward numerical tests 
whereas the problems are more challenging. Te Exercises 
come in related pairs, with fnal numerical answers avail-
able on the Book Companion Site for the ‘a’ questions. 
Final numerical answers to the odd-numbered problems 
are also available on the Book Companion Site. 

➤  Integrated activities
At the end of most chapters, you will fnd questions that 
cross several topics and chapters, and are designed to help 
you use your knowledge creatively in a variety of ways. 
Some of the questions refer to the Living Graphs on the 
Book Companion Site, which you will fnd helpful for 
answering them.

➤  Solutions manuals
Two solutions manuals have been written by Charles 
Trapp, Marshall Cady, and Carmen Giunta to accompany 
this book.

Te Student Solutions Manual (ISBN 1-4641-2449-3) 
provides full solutions to the ‘a’ exercises and to the odd-
numbered problems.

CHAPTER 3  
Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated.

TOPIC 3A Entropy

Discussion questions
3A.1 Te evolution of life requires the organization of a very large number 
of molecules into biological cells. Does the formation of living organisms 
violate the Second Law of thermodynamics? State your conclusion clearly 
and present detailed arguments to support it.

3A.2 Discuss the signifcance of the terms ‘dispersal’ and ‘disorder’ in the 
context of the Second Law.

3A.3 

3A.4 

Why?

Exercises
3A.1(a) During a hypothetical process, the entropy of a system increases by 
125 J K−1 while the entropy of the surroundings decreases by 125 J K−1. Is the 
process spontaneous?
3A.1(b) During a hypothetical process, the entropy of a system increases by 
105 J K−1 while the entropy of the surroundings decreases by 95 J K−1. Is the 
process spontaneous?

3A.2(a) A certain ideal heat engine uses water at the triple point as the hot 
source and an organic liquid as the cold sink. It withdraws 10.00 kJ of heat 
from the hot source and generates 3.00 kJ of work. What is the temperature of 
the organic liquid?
3A.2(b) A certain ideal heat engine uses water at the triple point as the hot 
source and an organic liquid as the cold sink. It withdraws 2.71 kJ of heat from 
the hot source and generates 0.71 kJ of work. What is the temperature of the 
organic liquid?

3A.3(a) Calculate the change in entropy when 100 kJ of energy is transferred 
reversibly and isothermally as heat to a large block of copper at (a) 0 °C,  
(b) 50 °C.
3A.3(b) Calculate the change in entropy when 250 kJ of energy is transferred 
reversibly and isothermally as heat to a large block of lead at (a) 20 °C, (b) 100 °C.

3A.4(a) Which of F2(g) and I2(g) is likely to have the higher standard molar 
entropy at 298 K?
3A.4(b) Which of H2O(g) and CO2(g) is likely to have the higher standard 
molar entropy at 298 K?

3A.5(a) Calculate the change in entropy when 15 g of carbon dioxide gas is 
allowed to expand from 1.0 dm3 to 3.0 dm3 at 300 K.
3A.5(b) Calculate the change in entropy when 4.00 g of nitrogen is allowed to 
expand from 500 cm3 to 750 cm3 at 300 K.

3A.6(a) Predict the enthalpy of vaporization of benzene from its normal 
boiling point, 80.1 °C.
3A.6(b) Predict the enthalpy of vaporization of cyclohexane from its normal 
boiling point, 80.7 °C.

3A.7(a) Calculate the molar entropy of a constant-volume sample of neon at 
500 K given that it is 146.22 J K−1 mol−1 at 298 K.
3A.7(b) Calculate the molar entropy of a constant-volume sample of argon at 
250 K given that it is 154.84 J K−1 mol−1 at 298 K.

3A.8(a) Calculate ΔS (for the system) when the state of 3.00 mol of perfect gas 
atoms, for which Cp,m =  5

2 R, is changed from 25 °C and 1.00 atm to 125 °C and 
5.00 atm. How do you rationalize the sign of ΔS?

3A.8(b) Calculate Δ

25 °C and 1.50 
of ΔS?

3A.9(a) Calculate Δ
50 

3A.9(b) Calculate Δ
100 

3A.10(a) 

gas of mass 14 

3A.10(b) 

to 4.60 dm3

expansion.

3A.11(a) 

surroundings.
3A.11(b) 

surroundings.

3A.12(a) 
−10.0 
of 1 
75.291 J K−1 mol−1

3A.12(b) 
−12.0 
1 

Te Instructor’s Solutions Manual provides full solutions 
to the ‘b’ exercises and to the even-numbered problems 
(available to download from the Book Companion Site for 
registered adopters of the book only).

of a gas are diferent in the initial and fnal states. Because S is a 
state function, we are free to choose the most convenient path 
from the initial state to the fnal state, such as reversible isother-
mal expansion to the fnal volume, followed by reversible heat-
ing at constant volume to the fnal temperature. Ten the total 
entropy change is the sum of the two contributions.

Example 3A.2 Calculating the entropy change for a 
composite process

Calculate the entropy change when argon at 25 °C and 1.00 
bar in a container of volume 0.500 dm3 is allowed to expand to 
1.000 dm3 and is simultaneously heated to 100 °C.

Method As remarked in the text, use reversible isothermal 
expansion to the final volume, followed by reversible heat-
ing at constant volume to the fnal temperature. Te entropy 
change in the frst step is given by eqn 3A.16 and that of the 
second step, provided CV is independent of temperature, by 
eqn 3A.20 (with CV in place of Cp). In each case we need to 
know n, the amount of gas molecules, and can calculate it 
from the perfect gas equation and the data for the initial state 
from n = piVi/RTi. Te molar heat capacity at constant volume 
is given by the equipartition theorem as 3

2R . (Te equiparti-
tion theorem is reliable for monatomic gases: for others and 
in general use experimental data like that in Tables 2C.1 and 
2C.2 of the Resource section, converting to the value at con-
stant volume by using the relation Cp,m − CV,m = R.)

Answer From eqn 3A.16 the entropy change in the isothermal 
expansion from Vi to Vf is

Ti to Tf

∆ ( )Step 2

changes, is

∆S nR ln

and obtain

∆S pV
T
i i

i
= ln

∆S =
( .1 0

= +0 173.

errors.

Self-test 3A.11 

Checklist of concepts

☐ 1. Te entropy acts as a signpost of spontaneous change.
☐ 2. Entropy change is defned in terms of heat transactions 

(the Clausius defnition).
☐ 3. The Boltzmann formula defines absolute entro-

pies in terms of the number of ways of achieving a 
confguration.

☐ 4. Te Carnot cycle is used to prove that entropy is a state 
function.

☐ 5. Te efciency of a heat engine is the basis of the defni-
tion of the thermodynamic temperature scale and one 
realization, the Kelvin scale.

☐ 6. The 

☐ 7. 

☐ 8. 

☐ 9. 
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BOOK COMPANION SITE

Te Book Companion Site to accompany Physical Chemistry: 
Termodynamics, Structure, and Change, tenth edition pro-
vides a number of useful teaching and learning resources for 
students and instructors. 

Te site can be accessed at:
 http://www.whfreeman.com/pchem10e/

Instructor resources are available only to registered  
adopters of the textbook. To register, simply visit http://www. 
whfreeman.com/pchem10e/ and follow the appropriate 
links. 

Student resources are openly available to all, without 
registration. 

‘Impact’ sections

‘Impact’ sections show how physical chemistry is applied in a 
variety of modern contexts. New for this edition, the Impacts 
are linked from the text by QR code images. Alternatively, 
visit the URL displayed next to the QR code image.

Group theory tables
Comprehensive group theory tables are available to download.

Figures and tables from the book

Instructors can fnd the artwork and tables from the book in 
ready-to-download format. Tese may be used for lectures 
without charge (but not for commercial purposes without 
specifc permission).

Molecular modeling problems

PDFs containing molecular modeling problems can be down-
loaded, designed for use with the Spartan Student™ sofware. 
However they can also be completed using any modeling 
sofware that allows Hartree-Fock, density functional, and 
MP2 calculations.

Living graphs
Tese interactive graphs can be used to explore how a proper-
ty changes as various parameters are changed. Living graphs 
are sometimes referred to in the Integrated activities at the 
end of a chapter.

       Materials on the Book Companion Site include:
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Foundations

Chemistry is the science of matter and the changes it can 
undergo. Physical chemistry is the branch of chemistry that 
establishes and develops the principles of the subject in terms 
of the underlying concepts of physics and the language of 
mathematics. It provides the basis for developing new spec-
troscopic techniques and their interpretation, for understand-
ing the structures of molecules and the details of their electron 
distributions, and for relating the bulk properties of matter 
to their constituent atoms. Physical chemistry also provides a 
window on to the world of chemical reactions, and allows us to 
understand in detail how they take place.

A matter

Troughout the text we draw on a number of concepts that 
should already be familiar from introductory chemistry, such 
as the ‘nuclear model’ of the atom, ‘Lewis structures’ of mol-
ecules, and the ‘perfect gas equation’. Tis Topic reviews these 
and other concepts of chemistry that appear at many stages of 
the presentation.

B energy

Because physical chemistry lies at the interface between 
physics and chemistry, we also need to review some of the 

concepts from elementary physics that we need to draw on in 
the text. Tis Topic begins with a brief summary of ‘classical 
mechanics’, our starting point for discussion of the motion 
and energy of particles. Ten it reviews concepts of ‘ther-
modynamics’ that should already be part of your chemical 
vocabulary. Finally, we introduce the ‘Boltzmann distribu-
tion’ and the ‘equipartition theorem’, which help to establish 
connections between the bulk and molecular properties of 
matter.

C waves

Tis Topic describes waves, with a focus on ‘harmonic waves’, 
which form the basis for the classical description of electro-
magnetic radiation. Te classical ideas of motion, energy, and 
waves in this Topic and Topic B are expanded with the princi-
ples of quantum mechanics (Chapter 7), setting the stage for 
the treatment of electrons, atoms, and molecules. Quantum 
mechanics underlies the discussion of chemical structure 
and chemical change, and is the basis of many techniques of 
investigation.



A matter

Te presentation of physical chemistry in this text is based on 
the experimentally verifed fact that matter consists of atoms. 

In this Topic, which is a review of elementary concepts and lan-
guage widely used in chemistry, we begin to make connections 
between atomic, molecular, and bulk properties. Most of the 
material is developed in greater detail later in the text.

A.1 Atoms

Te atom of an element is characterized by its atomic number, 
Z, which is the number of protons in its nucleus. Te number 
of neutrons in a nucleus is variable to a small extent, and the 
nucleon number (which is also commonly called the mass 
number), A, is the total number of protons and neutrons in the 
nucleus. Protons and neutrons are collectively called nucleons. 
Atoms of the same atomic number but diferent nucleon num-
ber are the isotopes of the element.

(a) The nuclear model
According to the nuclear model, an atom of atomic number Z 
consists of a nucleus of charge +Ze surrounded by Z electrons 
each of charge –e (e is the fundamental charge: see inside the 
front cover for its value and the values of the other fundamental 
constants). Tese electrons occupy atomic orbitals, which are 
regions of space where they are most likely to be found, with no 
more than two electrons in any one orbital. Te atomic orbitals 
are arranged in shells around the nucleus, each shell being char-
acterized by the principal quantum number, n = 1, 2, …. A shell 
consists of n2 individual orbitals, which are grouped together 
into n subshells; these subshells, and the orbitals they contain, 
are denoted s, p, d, and f. For all neutral atoms other than hydro-
gen, the subshells of a given shell have slightly diferent energies.

(b) The periodic table
Te sequential occupation of the orbitals in successive shells 
results in periodic similarities in the electronic confgurations, 
the specifcation of the occupied orbitals, of atoms when they 
are arranged in order of their atomic number. Tis periodicity 
of structure accounts for the formulation of the periodic table 
(see the inside the back cover). Te vertical columns of the 
periodic table are called groups and (in the modern conven-
tion) numbered from 1 to 18. Successive rows of the periodic 
table are called periods, the number of the period being equal 
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➤➤ Why do you need to know this material?
Because chemistry is about matter and the changes 
that it can undergo, both physically and chemically, the 
properties of matter underlie the entire discussion in this 
book.

➤➤ What is the key idea?
The bulk properties of matter are related to the identities 
and arrangements of atoms and molecules in a sample.

➤➤ What do you need to know already?
This Topic reviews material commonly covered in 
introductory chemistry.
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to the principal quantum number of the valence shell, the out-
ermost shell of the atom.

Some of the groups also have familiar names: Group 1 con-
sists of the alkali metals, Group 2 (more specifcally, calcium, 
strontium, and barium) of the alkaline earth metals, Group 
17 of the halogens, and Group 18 of the noble gases. Broadly 
speaking, the elements towards the lef of the periodic table 
are metals and those towards the right are non-metals; the 
two classes of substance meet at a diagonal line running 
from boron to polonium, which constitute the metalloids, 
with properties intermediate between those of metals and 
non-metals.

Te periodic table is divided into s, p, d, and f blocks, accord-
ing to the subshell that is last to be occupied in the formula-
tion of the electronic confguration of the atom. Te members 
of the d block (specifcally the members of Groups 3–11 in the 
d block) are also known as the transition metals; those of the 
f block (which is not divided into numbered groups) are some-
times called the inner transition metals. Te upper row of the 
f block (Period 6) consists of the lanthanoids (still commonly 
the ‘lanthanides’) and the lower row (Period 7) consists of the 
actinoids (still commonly the ‘actinides’).

(c) Ions
A monatomic ion is an electrically charged atom. When an 
atom gains one or more electrons it becomes a negatively 
charged anion; when it loses one or more electrons it becomes 
a positively charged cation. Te charge number of an ion is 
called the oxidation number of the element in that state (thus, 
the oxidation number of magnesium in Mg2+ is +2 and that of 
oxygen in O2– is –2). It is appropriate, but not always done, to 
distinguish between the oxidation number and the oxidation 
state, the latter being the physical state of the atom with a speci-
fed oxidation number. Tus, the oxidation number of magne-
sium is +2 when it is present as Mg2+, and it is present in the 
oxidation state Mg2+.

Te elements form ions that are characteristic of their loca-
tion in the periodic table: metallic elements typically form 
cations by losing the electrons of their outermost shell and 
acquiring the electronic confguration of the preceding noble 
gas atom. Nonmetals typically form anions by gaining electrons 
and attaining the electronic confguration of the following 
noble gas atom.

A.2 Molecules

A chemical bond is the link between atoms. Compounds that 
contain a metallic element typically, but far from universally, 
form ionic compounds that consist of cations and anions in a 
crystalline array. Te ‘chemical bonds’ in an ionic compound 

are due to the Coulombic interactions between all the ions in 
the crystal and it is inappropriate to refer to a bond between 
a specifc pair of neighbouring ions. Te smallest unit of an 
ionic compound is called a formula unit. Tus NaNO3, con-
sisting of a Na+ cation and a NO3

− anion, is the formula unit 
of sodium nitrate. Compounds that do not contain a metallic 
element typically form covalent compounds consisting of dis-
crete molecules. In this case, the bonds between the atoms of 
a molecule are covalent, meaning that they consist of shared 
pairs of electrons.

A note on good practice Some chemists use the term ‘mol-
ecule’ to denote the smallest unit of a compound with the 
composition of the bulk material regardless of whether it is an 
ionic or covalent compound and thus speak of ‘a molecule of 
NaCl’. We use the term ‘molecule’ to denote a discrete cova-
lently bonded entity (as in H2O); for an ionic compound we 
use ‘formula unit’.

(a) Lewis structures
Te pattern of bonds between neighbouring atoms is dis-
played by drawing a Lewis structure, in which bonds are 
shown as lines and lone pairs of electrons, pairs of valence 
electrons that are not used in bonding, are shown as dots. 
Lewis structures are constructed by allowing each atom to 
share electrons until it has acquired an octet of eight elec-
trons (for hydrogen, a duplet of two electrons). A shared pair 
of electrons is a single bond, two shared pairs constitute a 
double bond, and three shared pairs constitute a triple bond. 
Atoms of elements of Period 3 and later can accommodate 
more than eight electrons in their valence shell and ‘expand 
their octet’ to become hypervalent, that is, form more bonds 
than the octet rule would allow (for example, SF6), or form 
more bonds to a small number of atoms (see Brief illustration 
A.1). When more than one Lewis structure can be written for 
a given arrangement of atoms, it is supposed that resonance, 
a blending of the structures, may occur and distribute multi-
ple-bond character over the molecule (for example, the two 
Kekulé structures of benzene). Examples of these aspects of 
Lewis structures are shown in Fig. A.1.
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Figure A.1 Examples of Lewis structures.
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(b) VSEPR theory
Except in the simplest cases, a Lewis structure does not express 
the three-dimensional structure of a molecule. Te simplest 
approach to the prediction of molecular shape is valence-
shell electron pair repulsion theory (VSEPR theory). In this 
approach, the regions of high electron density, as represented 
by bonds—whether single or multiple—and lone pairs, take 
up orientations around the central atom that maximize their 
separations. Ten the position of the attached atoms (not the 
lone pairs) is noted and used to classify the shape of the mol-
ecule. Tus, four regions of electron density adopt a tetrahe-
dral arrangement; if an atom is at each of these locations (as 
in CH4), then the molecule is tetrahedral; if there is an atom at 
only three of these locations (as in NH3), then the molecule is 

trigonal pyramidal, and so on. Te names of the various shapes 
that are commonly found are shown in Fig. A.2. In a refnement 
of the theory, lone pairs are assumed to repel bonding pairs 
more strongly than bonding pairs repel each other. Te shape a 
molecule then adopts, if it is not determined fully by symmetry, 
is such as to minimize repulsions from lone pairs.

(c) Polar bonds

Covalent bonds may be polar, or correspond to an unequal 
sharing of the electron pair, with the result that one atom has 
a partial positive charge (denoted δ+) and the other a partial 
negative charge (δ–). Te ability of an atom to attract electrons 
to itself when part of a molecule is measured by the electro-
negativity, χ (chi), of the element. Te juxtaposition of equal 
and opposite partial charges constitutes an electric dipole. If 
those charges are +Q and –Q and they are separated by a dis-
tance d, the magnitude of the electric dipole moment, μ, is

μ =Qd  Defnition  magnitude of the electric dipole moment  (A.1)

Brief illustration A.3  Nonpolar molecules with  
polar bonds

Whether or not a molecule as a whole is polar depends on the 
arrangement of its bonds, for in highly symmetrical molecules 
there may be no net dipole. Thus, although the linear CO2 
molecule (which is structurally OCO) has polar CO bonds, 
their efects cancel and the molecule as a whole is nonpolar.

Self-test A.3 Is NH3 polar?
Answer: Yes

Brief illustration A.1  Octet expansion

Octet expansion is also encountered in species that do not 
ne cessarily require it, but which, if it is permitted, may acquire 
a lower energy. Tus, of the structures (1a) and (1b) of the SO4

2− 
ion, the second has a lower energy than the first. The actual 
structure of the ion is a resonance hybrid of both structures 
(together with analogous structures with double bonds in dif-
ferent locations), but the latter structure makes the dominant 
contribution.
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Self-test A.1 Draw the Lewis structure for XeO4.
Answer: See 2 
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Figure A.2 The shapes of molecules that result from 
application of VSEPR theory.

Brief illustration A.2  Molecular shapes

In SF4 the lone pair adopts an equatorial position and the two 
axial S–F bonds bend away from it slightly, to give a bent see-
saw shaped molecule (Fig. A.3).

Self-test A.2 Predict the shape of the SO3
2– ion.

Answer: Trigonal pyramid

(a) (b)

Figure A.3 (a) In SF4 the lone pair adopts an equatorial 
position. (b) The two axial S–F bonds bend away from it 
slightly, to give a bent see-saw shaped molecule.



A Matter  5

A.3 Bulk matter

Bulk matter consists of large numbers of atoms, molecules, or 
ions. Its physical state may be solid, liquid, or gas:

 A solid is a form of matter that adopts and maintains a 
shape that is independent of the container it occupies.

 A liquid is a form of matter that adopts the shape of the 
part of the container it occupies (in a gravitational feld, 
the lower part) and is separated from the unoccupied 
part of the container by a defnite surface.

 A gas is a form of matter that immediately flls any 
container it occupies.

A liquid and a solid are examples of a condensed state of mat-
ter. A liquid and a gas are examples of a fuid form of matter: 
they fow in response to forces (such as gravity) that are applied.

(a) Properties of bulk matter
Te state of a bulk sample of matter is defned by specifying the 
values of various properties. Among them are:

 Te mass, m, a measure of the quantity of matter present 
(unit: 1 kilogram, 1 kg).

 Te volume, V, a measure of the quantity of space the 
sample occupies (unit: 1 cubic metre, 1 m3).

 Te amount of substance, n, a measure of the number of 
specifed entities (atoms, molecules, or formula units) 
present (unit: 1 mole, 1 mol).

An extensive property of bulk matter is a property that depends 
on the amount of substance present in the sample; an intensive 
property is a property that is independent of the amount of sub-
stance. Te volume is extensive; the mass density, ρ (rho), with

ρ = m
V  

 mass density  (A.2)

is intensive.
Te amount of substance, n (colloquially, ‘the number of 

moles’), is a measure of the number of specifed entities pre-
sent in the sample. ‘Amount of substance’ is the ofcial name 
of the quantity; it is commonly simplifed to ‘chemical amount’ 
or simply ‘amount’. Te unit 1 mol is currently defned as the 
number of carbon atoms in exactly 12 g of carbon-12. (In 2011 
the decision was taken to replace this defnition, but the change 
has not yet, in 2014, been implemented.) Te number of enti-
ties per mole is called Avogadro’s constant, NA; the currently 
accepted value is 6.022 × 1023 mol−1 (note that NA is a constant 
with units, not a pure number).

Te molar mass of a substance, M (units: formally kilo-
grams per mole but commonly grams per mole, g mol−1) is the 
mass per mole of its atoms, its molecules, or its formula units. 
Te amount of substance of specifed entities in a sample can 
readily be calculated from its mass, by noting that

n
m
M

=
 

 amount of substance  (A.3)

A note on good practice Be careful to distinguish atomic 
or molecular mass (the mass of a single atom or molecule; 
units kg) from molar mass (the mass per mole of atoms 
or molecules; units kg mol−1). Relative molecular masses of 
atoms and molecules, Mr = m/mu, where m is the mass of the 
atom or molecule and mu is the atomic mass constant (see 
inside front cover), are still widely called ‘atomic weights’ 
and ‘molecular weights’ even though they are dimensionless 
quantities and not weights (the gravitational force exerted 
on an object).

A sample of matter may be subjected to a pressure, p (unit:  
1 pascal, Pa; 1 Pa = 1 kg m−1 s−2), which is defined as the 
force, F, it is subjected to divided by the area, A, to which 
that force is applied. A sample of gas exerts a pressure on 
the walls of its container because the molecules of gas are 
in ceaseless, random motion, and exert a force when they 
strike the walls. The frequency of the collisions is normally 
so great that the force, and therefore the pressure, is per-
ceived as being steady.

Although 1 pascal is the SI unit of pressure (Te chem-
ist’s toolkit A.1), it is also common to express pressure in bar  
(1 bar = 105 Pa) or atmospheres (1 atm = 101 325 Pa exactly), 
both of which correspond to typical atmospheric pressure. 
Because many physical properties depend on the pressure 
acting on a sample, it is appropriate to select a certain value 
of the pressure to report their values. Te standard pressure 
for reporting physical quantities is currently defned as p< = 1 
bar exactly.

Brief illustration A.4  Volume units

Volume is also expressed as submultiples of 1 m3, such as 
cubic decimetres (1 dm3 = 10−3 m3) and cubic centimetres 
(1 cm3 = 10−6 m3). It is also common to encounter the non-
SI unit litre (1 L = 1 dm3) and its submultiple the millilitre 
(1 mL = 1 cm3). To carry out simple unit conversions, simply 
replace the fraction of the unit (such as 1 cm) by its defnition 
(in this case, 10−2 m). Tus, to convert 100 cm3 to cubic deci-
metres (litres), use 1 cm = 10−1 dm, in which case 100 cm3 = 100 
(10−1 dm)3, which is the same as 0.100 dm3.

Self-test A.4 Express a volume of 100 mm3 in units of cm3.
Answer: 0.100 cm3
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To specify the state of a sample fully it is also necessary to 
give its temperature, T. Te temperature is formally a prop-
erty that determines in which direction energy will fow as 
heat when two samples are placed in contact through ther-
mally conducting walls: energy fows from the sample with the 
higher temperature to the sample with the lower temperature. 
Te symbol T is used to denote the thermodynamic tempera-
ture which is an absolute scale with T = 0 as the lowest point. 
Temperatures above T = 0 are then most commonly expressed 
by using the Kelvin scale, in which the gradations of tempera-
ture are expressed as multiples of the unit 1 kelvin (1 K). Te 
Kelvin scale is currently defned by setting the triple point of 

water (the temperature at which ice, liquid water, and water 
vapour are in mutual equilibrium) at exactly 273.16 K (as for 
certain other units, a decision has been taken to revise this 
defnition, but it has not yet, in 2014, been implemented). Te 
freezing point of water (the melting point of ice) at 1 atm is 
then found experimentally to lie 0.01 K below the triple point, 
so the freezing point of water is 273.15 K. Te Kelvin scale is 
unsuitable for everyday measurements of temperature, and it is 
common to use the Celsius scale, which is defned in terms of 
the Kelvin scale as

θ / / .° = −C K 273 15T  Defnition  celsius scale  (A.4)

Tus, the freezing point of water is 0 °C and its boiling point (at 
1 atm) is found to be 100 °C (more precisely 99.974 °C). Note 
that in this text T invariably denotes the thermodynamic (abso-
lute) temperature and that temperatures on the Celsius scale 
are denoted θ (theta).

A note on good practice Note that we write T = 0, not T = 0 K. 
General statements in science should be expressed without 
reference to a specifc set of units. Moreover, because T (unlike 
θ) is absolute, the lowest point is 0 regardless of the scale used 
to express higher temperatures (such as the Kelvin scale). 
Similarly, we write m = 0, not m = 0 kg and l = 0, not l = 0 m.

(b) The perfect gas equation
Te properties that defne the state of a system are not in gen-
eral independent of one another. Te most important example 
of a relation between them is provided by the idealized fuid 
known as a perfect gas (also, commonly, an ‘ideal gas’):

pV nRT=   Perfect gas equation  (A.5)

Here R is the gas constant, a universal constant (in the sense 
of being independent of the chemical identity of the gas) with 
the value 8.3145 J K−1 mol−1. Troughout this text, equations 
applicable only to perfect gases (and other idealized systems) 
are labelled, as here, with a number in blue.

A note on good practice Although the term ‘ideal gas’ is 
almost universally used in place of ‘perfect gas’, there are 
reasons for preferring the latter term. In an ideal system 
the interactions between molecules in a mixture are all the 
same. In a perfect gas not only are the interactions all the 
same but they are in fact zero. Few, though, make this useful 
distinction.

Equation A.5, the perfect gas equation, is a summary of 
three empirical conclusions, namely Boyle’s law (p ∝ 1/V at 
constant temperature and amount), Charles’s law (p ∝ T at con-
stant volume and amount), and Avogadro’s principle (V ∝ n at 
constant temperature and pressure).

The chemist’s toolkit A.1  Quantities and units

The result of a measurement is a physical quantity that is 
reported as a numerical multiple of a unit:

physicalquantity numerical value unit= ×

It follows that units may be treated like algebraic quanti-
ties and may be multiplied, divided, and cancelled. Tus, the 
expression (physical quantity)/unit is the numerical value (a 
dimensionless quantity) of the measurement in the specifed 
units. For instance, the mass m of an object could be reported 
as m = 2.5 kg or m/kg = 2.5. See Table A.1 in the Resource sec-
tion for a list of units. Although it is good practice to use only 
SI units, there will be occasions where accepted practice is 
so deeply rooted that physical quantities are expressed using 
other, non-SI units. By international convention, all physical 
quantities are represented by oblique (sloping) symbols; all 
units are roman (upright).

Units may be modifed by a prefx that denotes a factor of a 
power of 10. Among the most common SI prefxes are those 
listed in Table A.2 in the Resource section. Examples of the use 
of these prefxes are:

Powers of units apply to the prefx as well as the unit they mod-
ify. For example, 1 cm3 = 1 (cm)3, and (10−2 m)3 = 10−6 m3. Note 
that 1 cm3 does not mean 1 c(m3) . When carrying out numer-
ical calculations, it is usually safest to write out the numerical 
value of an observable in scientifc notation (as n.nnn × 10n).

Tere are seven SI base units, which are listed in Table A.3 
in the Resource section. All other physical quantities may be 
expressed as combinations of these base units (see Table A.4 
in the Resource section). Molar concentration (more formally, 
but very rarely, amount of substance concentration) for exam-
ple, which is an amount of substance divided by the volume it 
occupies, can be expressed using the derived units of mol dm−3 
as a combination of the base units for amount of substance 
and length. A number of these derived combinations of units 
have special names and symbols and we highlight them as 
they arise.

1 nm = 10−9 m 1 ps = 10−12 s 1 µmol = 10−6 mol
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All gases obey the perfect gas equation ever more closely 
as the pressure is reduced towards zero. Tat is, eqn A.5 is an 
example of a limiting law, a law that becomes increasingly 
valid in a particular limit, in this case as the pressure is reduced 
to zero. In practice, normal atmospheric pressure at sea level 
(about 1 atm) is already low enough for most gases to behave 
almost perfectly, and unless stated otherwise, we assume in 
this text that the gases we encounter behave perfectly and obey 
eqn A.5.

A mixture of perfect gases behaves like a single perfect gas. 
According to Dalton’s law, the total pressure of such a mixture 
is the sum of the pressures to which each gas would give rise if it 
occupied the container alone:

p p p= + +A B    dalton’s law  (A.6)

Each pressure, pJ, can be calculated from the perfect gas equa-
tion in the form pJ = nJRT/V.

Example A.1  Using the perfect gas equation

Calculate the pressure in kilopascals exerted by 1.25 g of nitro-
gen gas in a fask of volume 250 cm3 at 20 °C.

Method To use eqn A.5, we need to know the amount of mol-
ecules (in moles) in the sample, which we can obtain from the 
mass and the molar mass (by using eqn A.3) and to convert the 
temperature to the Kelvin scale (by using eqn A.4).

Answer The amount of N2 molecules (of molar mass 28.02  
g mol−1) present is

n
m

M
( )

( )
.

.
.
.

N
N

g
g mol

mol2
2

1

1 25
28 02

1 25
28 02

= = =−

Te temperature of the sample is

T T/K 2 273 15 so 2 273 15 K= + = +0 0. , ( . )

Terefore, afer rewriting eqn A.5 as p = nRT/V,

p = × × +− −( . / . ) ( . ) (1 25 28 02 8 3145 201 1mol JK mol

n R� ��� ��� � ���� ����
2273 15

2 50 10

1 25 28 02 8 3

4 3

. )
( . )

( . / . ) ( .

K
m

T

V

� ��� ���

� ��� ���×

= ×

−

1145 20 273 15
2 50 10

4 35 10 435

4 3

5

3

) ( . )
.

.

× +
×

= × =

−

− =

J
m

Pa

1J m 1Pa�
kkPa

A note on good practice It is best to postpone a numerical 
calculation to the last possible stage, and carry it out in a 
single step. Tis procedure avoids rounding errors. When 

we judge it appropriate to show an intermediate result 
without committing ourselves to a number of signifcant 
fgures, we write it as n.nnn….

Self-test A.5 Calculate the pressure exerted by 1.22 g of carbon 
dioxide confned in a fask of volume 500 dm3 (5.00 × 102 dm3) 
at 37 °C.

Answer: 143 Pa

Checklist of concepts

☐ 1. In the nuclear model of an atom negatively charged 
electrons occupy atomic orbitals which are arranged in 
shells around a positively charged nucleus.

☐ 2. Te periodic table highlights similarities in electronic 
confgurations of atoms, which in turn lead to similari-
ties in their physical and chemical properties.

☐ 3. Covalent compounds consist of discrete molecules in 
which atoms are linked by covalent bonds.

☐ 4. Ionic compounds consist of cations and anions in a 
crystalline array.

☐ 5. Lewis structures are useful models of the pattern of 
bonding in molecules.

☐ 6. The valence-shell electron pair repulsion the-
ory (VSEPR theory) is used to predict the three- 

dimensional shapes of molecules from their Lewis 
structures.

☐ 7. Te electrons in polar covalent bonds are shared une-
qually between the bonded nuclei.

☐ 8. Te physical states of bulk matter are solid, liquid, or 
gas.

☐ 9. Te state of a sample of bulk matter is defned by speci-
fying its properties, such as mass, volume, amount, 
pressure, and temperature.

☐ 10. Te perfect gas equation is a relation between the pres-
sure, volume, amount, and temperature of an idealized 
gas.

☐ 11. A limiting law is a law that becomes increasingly valid 
in a particular limit.
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Checklist of equations

Property Equation Comment Equation number

Electric dipole moment μ = Qd μ is the magnitude of the moment A.1

Mass density ρ = m/V Intensive property A.2

Amount of substance n = m/M Extensive property A.3

Celsius scale θ/°C = T/K – 273.15 Temperature is an intensive property; 273.15 is exact. A.4

Perfect gas equation pV = nRT A.5

Dalton’s law p = pA + pB + … A.6



B energy

Much of chemistry is concerned with transfers and transforma-
tions of energy, and from the outset it is appropriate to defne 
this familiar quantity precisely. We begin here by reviewing 
classical mechanics, which was formulated by Isaac Newton 
in the seventeenth century, and establishes the vocabulary used 
to describe the motion and energy of particles. Tese classical 
ideas prepare us for quantum mechanics, the more fundamen-
tal theory formulated in the twentieth century for the study of 
small particles, such as electrons, atoms, and molecules. We 
develop the concepts of quantum mechanics throughout the 
text. Here we begin to see why it is needed as a foundation for 
understanding atomic and molecular structure.

B.1 Force

Molecules are built from atoms and atoms are built from sub-
atomic particles. To understand their structures we need to 
know how these bodies move under the infuence of the forces 
they experience.

(a) Momentum
‘Translation’ is the motion of a particle through space. Te 
velocity, v, of a particle is the rate of change of its position r :

v= d
d

r
t  

Defnition  Velocity  (B.1)

For motion confned to a single dimension, we would write 
vx = dx/dt. Te velocity and position are vectors, with both 
direction and magnitude (vectors and their manipulation are 
treated in detail in Mathematical background 5). Te magni-
tude of the velocity is the speed, v. Te linear momentum, p, of 
a particle of mass m is related to its velocity, v, by

p=mv  Defnition  linear momentum  (B.2)

Like the velocity vector, the linear momentum vector points in 
the direction of travel of the particle (Fig. B.1); its magnitude is 
denoted p.

Te description of rotation is very similar to that of trans-
lation. Te rotational motion of a particle about a central 
point is described by its angular momentum, J. Te angular 
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➤➤ Why do you need to know this material?
Energy is the central unifying concept of physical chemistry, 
and you need to gain insight into how electrons, atoms, 
and molecules gain, store, and lose energy.

➤➤ What is the key idea?
Energy, the capacity to do work, is restricted to discrete 
values in electrons, atoms, and molecules.

➤➤ What do you need to know already?
You need to review the laws of motion and principles of 
electrostatics normally covered in introductory physics 
and concepts of thermodynamics normally covered in 
introductory chemistry.




